Строительный журнал

Плазменное напыление является одним из способов газотермического нанесения покрытий. В основе этого процесса лежит нагрев напыляемого материала до жидкого или пластического состояния, перенос его высокотемпературной плазменной струей к подложке с последующим образованием слоя покрытия.

При плазменном напылении в качестве напыляющих материалов применяют порошки, проволоки, прутки. Наиболее широко распространено напыление порошками. Схема плазменного напыления с использованием порошковых материалов показана на рис. 1. В плазмотроне, состоящем из водоохлаждаемого катодного узла (катод 2 и корпус 3) и анодного узла, с помощью источника 9 постоянного сварочного тока возбуждается плазменная дуга 8, которая стабилизируется стенками канала сопла и плазмообразуюшим газом, поступающим через подвод 1. Порошок подают из порошкового питателя 6 с помощью газа, который поступает по подводу 7.

Температура плазменной струи достигает 5000-55000 °С, а скорость истечения - 1000-3000 м/с. В плазменной струе частицы порошка расплавляются и приобретают скорость 50-500 м/с. Скорость полета частиц порошка зависит от их размера, плотности материала, силы сварочного тока дуги, природы и расхода плазмообразующего газа, конструкции плазмотрона. Порошок вводят в плазменную струю ниже среза сопла, на срез сопла или непосредственно в сопло. Нагрев напыляемых деталей не превышает 100-200 °С.

Рис. 1. Схема плазменного напыления порошком:

1 - подвод плазмообразующего газа; 2 - катод плазмотрона; 3 - корпус катода; 4 - изолятор; 5 - корпус анода; 6 - порошковый питатель; 7 - подвод газа, транспортирующего порошок; 8 - плазменная дуга; 9 - источник питания.

К преимуществам способа плазменного напыления относят возможность получения покрытий из большинства материалов, плавящихся без разложения и ограничения по температуре плавления. Производительность плазменного напыления достаточно высока: 3-20 кг/ч для плазмотронов с мощностью 30-40 кВт и 50-80 кг/ч для плазмотронов мощностью 150-200 кВт.

Плазменным напылением наносят покрытия как на плоские поверхности, так и на тела вращения и криволинейные поверхности. Для покрытия характерна слоистая структура с высокой неоднородностью физических и механических свойств (рис. 2). Тип связей между покрытием и деталью (подложкой), а также между частицами покрытия обычно смешанный - механическое сцепление, сила физического и химического взаимодействий. Прочность сцепления покрытия с подложкой обычно составляет 10-50 МПа при испытаниях на нормальный отрыв.

Физические особенности формирования покрытий обуславливают появление открытой и закрытой пористостей. По мере увеличения толщины наносимого слоя открытые поры перекрываются, и пористость покрытия снижается. Поэтому плотность плазменных покрытий отличается от плотности материала и колеблется в пределах 80-97%. Обычно пористость плазменных покрытий составляет 10-15%.

Толщина покрытия практически не ограничена возможностями самого способа. Однако в силу физических особенностей процесса образования покрытий с увеличением толщины наносимого слоя в нем возрастают внутренние напряжения, которые стремятся оторвать покрытие от подложки. Поэтому обычно толщина покрытия не превышает 1 мм. Конструктивную нагрузку несет материал детали, а материал покрытия придает поверхности детали такие свойства, как твердость, износостойкость и т. п.

В качестве плазмообразующих газов применяют аргон, азот высокой чистоты, водород, гелий, а также смеси этих и других газов. В последние десятилетия успешно развиваются процессы плазменного напыления с использованием в качестве плазмообразующего газа смеси воздуха с горючим углеводородным газом (метаном, пропан-бутаном).

Рис. 2. Схема структуры плазменного покрытия:

1 - граница между частицами напыленного материала;

2 - граница между слоями;

3 - граница между покрытием и деталью;

4 - частица напыленного материала;

5 - поверхность детали.

Рис. 3. Микрофотография плазменного покрытия.

Для генерирования плазмы используют различные плазмотроны. Реализуемые в конкретной конструкции диапазон и уровень удельных мощностей характеризуют эффективность преобразования электрической энергии дуги в тепловую плазменной струи, а также технологические возможности плазмотрона.

Задача разработки технологического плазмотрона всегда сводится к созданию относительно простой, ремонтопригодной конструкции, обеспечивающей стабильную длительную работу в широком диапазоне изменения сварочного тока дуги, расхода и состава плазмообразующего газа, а также генерирование плазменной струи с воспроизводимыми параметрами, что позволяет эффективно обрабатывать материалы с различными свойствами.

В практике напыления применяют как однородные порошки различных материалов (металлов, сплавов, оксидов, бескислородных тугоплавких соединений), так и композиционные, а также механические смеси указанных материалов.

Наиболее распространены следующие порошковые материалы:

металлы - Ni, Al, Mo, Ti, Cr, Cu;

сплавы - легированные стали , чугун , никелевые , медные , кобальтовые , титановые , в том числе самофлюсующиеся сплавы (Ni-Cr-B-Si, Ni-B-Si, Co-Ni-Cr-B-Si, Ni-Cu-B-Si);

оксиды Al , Ti , Cr , Zr и других металлов и их композиции;

бескислородные тугоплавкие соединения и твердые сплавы - карбиды Cr , Ti , W и др. и их композиции с Со и Ni ;

композиционные плакированные порошки - Ni -графит, Ni -А l и др.;

композиционные конгломерированные порошки- Ni - Al , NiCrBSi - Al
и др.;

механические смеси - Cr 3 C 2 + NiCr , NiCrBSi + Cr 3 C 2 и др.

В случае применения композиционных порошков в технологии газотермического напыления преследуют следующие цели:

использование экзотермического эффекта взаимодействия компонентов (Ni - Al , Ni - Ti и т. п.);

равномерное распределение компонентов в объеме покрытия, например, типа керметов (Ni - Al 2 0 3 и т. п.);

защита материала ядра частицы от окисления или разложения при напылении (Co - WC , Ni - TiC и т. п.):

формирование покрытия с участием материала, самостоятельно не образующего покрытия при газотермическом напылении (Ni -графит и т. п.);

улучшение условий формирования покрытий за счет увеличения средней плотности частиц, введение компонентов с высокой энтальпией.

Применяемые для напыления порошки не должны разлагаться или возгоняться в процессе напыления, а должны иметь достаточную разницу между температурами плавления и кипения (не менее 200 °С).

При выборе порошковых материалов для получения различных плазменных покрытий необходимо учитывать следующие положения.

Гранулометрический состав применяемых порошковых материалов имеет первостепенное значение, так как от него зависят производительность и коэффициент использования, а также свойства покрытий. Размер частиц порошка выбирают в зависимости от характеристик источника тепловой энергии, теплофизических свойств напыляемого материала и его плотности.

Обычно при напылении мелкодисперсного порошка получают более плотное покрытие, хотя в нем содержится большое количество оксидов, возникающих в результате нагрева частиц и их взаимодействия с высокотемпературным потоком плазмы. Чрезмерно крупные частицы не успевают прогреться, поэтому не образуют достаточно прочной связи с поверхностью и между собой или просто отскакивают при ударе. При напылении порошка, состоящего из смеси частиц разных диаметров, более мелкие частицы расплавляются в непосредственной близости от места их подачи в сопло, заплавляют отверстие и образуют наплывы, которые время от времени отрываются и в виде больших капель попадают на напыляемое покрытие, ухудшая его качество. Поэтому напыление предпочтительно следует производить порошками одной фракции, а все порошки перед напылением подвергать рассеиванию (классификации).

Для керамических материалов оптимальный размер частиц порошка 50-70 мкм, а для металлов - около 100 мкм. Порошки, предназначенные для напыления, должны иметь сферическую форму. Они обладают хорошей сыпучестью, что облегчает их транспортировку к плазмотрону.

Почти все порошки гигроскопичны и могут окисляться, поэтому их хранят в закрытой таре. Порошки, находившиеся некоторое время в открытой таре, перед напылением прокаливают в сушильном шкафу из нержавеющей стали слоем 5-10 мм при температуре 120-130 °С в течение 1,5-2 ч.

Порошок для напыления выбирают с учетом условий эксплуатации напыляемых деталей.

Возможными дефектами плазменно-дугового способа нанесения покрытий является отслоение напыленного слоя, растрескивание покрытия, появление на поверхности крупных капель материала покрытия, капель меди, а также разнотолщинность покрытия (выше допустимой).

С целью повышения адгезионной и когезионной прочностей и других качественных характеристик плазменные покрытия подвергают дополнительной обработке различными способами: обкатка роликами под током, очистка напыляемых поверхностей от окалины и удаление слабо сцепленных с основой или с предыдущим слоем частиц металлическими щетками в процессе самого напыления, струйно-абразивная и ультразвуковая обработка и др.

Одним из наиболее распространенных способов улучшения качества покрытий из самофлюсующихся сплавов является их оплавление. Для оплавления используют индукционный или печной нагрев, нагрев в расплавах солей или металлов, плазменный, газопламенный, лазерный и др. В большинстве случаев предпочтение отдают нагреву в индукторах токами высокой частоты (ТВЧ). Напыленные покрытия системы Ni - Cr - B - Si - C подвергают оплавлению при 920-1200 0 С с целью уменьшения исходной пористости, повышения твердости и прочности сцепления с металлом - основой.

Технологический процесс плазменного напыления состоит из предварительной очистки (любым известным методом), активационной обработки (например, абразивно-струйной) и непосредственно нанесения покрытия путем перемещения изделия относительно плазмотрона или наоборот.

Литература:

Лащенко Г.И. Плазменное упрочнение и напыление. – К.: «Екотехнолог i я», 2003 – 64 с.

Несущая поверхность детали иногда требует доработки: изменения структуры или свойств механических и физических параметров. Провести такое преобразование можно, используя плазменное напыление. Процесс является одним из видов диффузии, при которой происходит металлизация внешнего слоя изделия. Для осуществления такой обработки применяют специальное оборудование, способное превращать металлические частички в плазму и с высокой точностью переносить ее на объект.

Свойство покрытий, полученных путем , отличается высоким качеством. Они имеют хорошую адгезию к основанию и практически составляют с последним единое целое. Универсальность метода заключается в том, что нанести можно абсолютно любые металлы, а также другие материалы, например полимеры.

Получить напыление способом плазменного переноса частиц можно только в условиях производственных цехов на заводах и фабриках.

Суть процесса плазменного напыления заключается в том, что в струю из плазмы, которая имеет сверхвысокие температуры и направлена на обрабатываемый объект, подают дозированное количество частиц металла. Последние расплавляются и, увлекаемые струей, оседают на поверхности детали. К плазменному напылению прибегают в следующих случаях:

  1. Создание защитного слоя на изделии. Это может быть механическое усиление, когда на менее прочное основание наносят более прочный металл. С помощью диффузионной металлизации также можно увеличить сопротивляемость детали коррозионному воздействию, если наносить пленку из оксидов или металлов, мало подверженных окислению.
  2. Восстановление изношенных деталей. В этом случае за счет нового слоя покрытия можно убрать дефекты разрушения поверхности, чтобы придать изделию первоначальное состояние. В качестве материала напыления здесь используют металл, идентичный материалу основания.

Плазменное напыление отличается от других видов напыления рядом особенностей:

  1. Благодаря тому что плазма воздействует на исходное основание при помощи сверхвысоких температур (5000–6000 градусов по Цельсию), процесс протекает в ускоренном режиме. Иногда достаточно долей секунд, чтобы получить заданную толщину напыления.
  2. Диффузионная металлизация позволяет наносить как монослой на поверхность, так и делать комбинированное напыление. При помощи плазменной струи можно дополнять диффундируемый металл элементами газа, необходимыми для насыщения слоя элементарными частицами нужных химических элементов.
  3. При плазменном напылении практически отсутствует эффект дополнительного окисления основного металла. Это связано с тем, что реакция протекает в среде инертных газов без привлечения кислорода.
  4. Финальное покрытие обладает высоким качеством за счет идеальной однородности и равномерности проникновения атомов напыляемого металла в слой основания.

Методом диффузионной металлизации плазменного типа можно получать слои толщиной от нескольких миллиметров до микрон.

Технология и процесс напыления

При газоплазменном напылении металлов основой рабочей газовой среды являются инертные газы азот или аргон. Дополнительно по необходимости технологического процесса к основным газам может быть добавлен водород. Между катодом, в качестве которого выступает электрод в виде остроконечного стержня внутри горелки, и анодом, коим является подвергаемое водяному охлаждению сопло из меди, в процессе работы возникает дуга. Она прогревает до необходимой температуры рабочий газ, который обретает состояние плазменной струи.

Одновременно в сопло подается металлический материал в виде порошка. Этот металл под воздействием плазмы превращается в субстанцию с высокой способностью к проникновению в поверхностный слой обрабатываемого изделия. Распыляемый под давлением расплавочный материал оседает на основании.

Современные плазменные горелки имеют КПД в пределах 50–70 %. Они позволяют работать с любыми металлами, в том числе и тугоплавкими сплавами. Плазменное напыление – полностью управляемый процесс, позволяющий регулировать скорость подачи плазмы, мощность и форму струи.

В случае восстановления формы детали путем плазменного напыления технологический процесс имеет следующие этапы:

  1. Подготовка напыляемого материала. Суть процесса заключается в сушке порошка в специальных шкафах при температуре 150–200 градусов по Цельсию. При необходимости порошок также просеивают через сито для получения однородных по размеру гранул.
  2. Подготовка подложки или основания. На этом этапе с поверхности детали удаляют все посторонние включения. Это могут быть окислы либо различные загрязнения масляными веществами. Для лучшего сцепления основание может быть подвергнуто дополнительному процессу образования шероховатости. Если на изделии имеются участки, которые не следует подвергать напылению, их закрывают специальными экранами.
  3. и операции по заключительной обработке полученной поверхности.

К подложке напыляемый материал может доходить в твердом состоянии, в пластичной форме либо в жидком виде. Это определяется режимом технологического процесса.

Применяемое оборудование

Стандартный комплект установки плазменного напыления включает в себя:

  1. Источник электрического питания. Его назначение – питать схему формирования высоковольтного разряда и всех систем.
  2. Блок формирования разряда. В зависимости от устройства схемы может генерировать искровые разряды, импульсные высокочастотные напряжения либо сплошную электрическую дугу.
  3. Резервуары хранения газа – это чаще всего обычные газовые баллоны.
  4. Камеру, где непосредственно происходит напыление. Внутрь такого герметичного резервуара помещают обрабатываемую заготовку и плазмотрон.
  5. Установку вакуумного типа с насосом. В задачи этого агрегата входит создание требуемого разряжения в камере и образование тягового потока для подачи рабочей среды.
  6. Плазмотрон – устройство, которое снабжено соплом для подачи рабочей среды и системой приводов для перемещения сопла в пространстве.
  7. Систему дозирования напыляемого порошка. Служит для точной подачи необходимого количества напыляемого материала в единицу времени.
  8. Охлаждающую систему. В задачу этого элемента входит отвод лишнего тепла от области сопла, через которое проходит раскаленная плазма.
  9. Аппаратную часть. Она включает в себя компьютер, который управляет всем процессом плазменного напыления.
  10. Систему вентиляции. Она служит для отвода отработанных газов из рабочей камеры.

Современные установки диффузионной металлизации имеют специальное программное обеспечение, позволяющее путем введения заданных параметров проводить полностью автономную операцию обработки изделия. В задачи оператора входит установка детали в камеру и задание точных условий проведения процесса.

Уважаемые посетители сайта: специалисты и технологи по плазменному напылению! Поддержите тему статьи в комментариях. Будем благодарны за конструктивные замечания и дополнения, которые расширят обсуждаемый вопрос.

Сущность процесса. При плазменном напылении для расплавления порошка, подаваемого в горелку-распылитель (плазмотрон), используется теплота сжатой электрической дуги (плазменной дуги). Расплавленные частицы порошка выносятся потоком горячего газа из сопла и напыляются на поверхность детали, на которую направлено пламя горелки.
Преимущества плазменного напыления перед газопламенным следующие: возможно напыление материалов, температура плавления которых превышает температуру ацетилено-кислородного пламени; производительность напыления керамических материалов увеличивается в 6-10 раз; не требуется применения кислорода и ацетилена. По сравнению с электродуговым способом напыления преимущество плазменного способа состоит в возможности напыления порошковых материалов, в том числе керамических, в то время как для электродугового способа требуется применение проволоки из напыляемого металла.
По составу, строению и свойствам (прочность, степень окисленности, тепло- и электропроводность и др.) плазменные покрытия не имеют преимуществ перед нанесенными газопламенным и электродуговым способами.
Области применения. Плазменные покрытия применяются, как правило, для нанесения жаростойких покрытий, необходимых в реактивной технике. Этим способом можно кэпылять-также поршни дизелей, рабочие лопатки дымососов, дроссельные заслонки и фурмы доменных печей и другие изделия, требующие повышенной жаростойкости. При нанесении покрытий на внутренние поверхности деталей диаметр отверстия должен быть не менее 100 мм. С увеличением толщины слоя покрытия их прочность снижается. Так, например, при покрытии окисью алюминия прочность слоя резко падает при толщине слоя свыше 0,8 мм. Обычно применяют покрытия с толщиной слоя 0,2-0,3 мм.
Для повышения прочности сцепления керамических покрытий с основным металлом их напыляют на подслой. При напылении окиси алюминия лучшим для подслоя является нихром или коррозионностойкая сталь. Толщина подслоя равна 0,05 мм. Менее пригодны для подслоя, с точки зрения термостойкости, - молибден и вольфрам, образующие окислы с недостаточной величиной прочности.
Плазменные покрытия используют также в качестве электроизоляционных, например при изготовлении деталей МГД-генераторов, теплообменников, тензодатчиков, дисков электропил, индукторов для высокочастотной пайки и других деталей в электротехнике, радиоэлектронике, приборостроении. Пористость покрытий, в том числе керамических, не препятствует применению их в качестве электроизоляционных материалов, если они защищены от попадания влаги.
Плазменные покрытия для защиты деталей от коррозии и износа менее эффективны, так как имеют высокую пористость. Для уменьшения пористости они нуждаются в дополнительной пропитке (органическими полимерными материалами - смолами и лаками) или оплавлении. Свойства пропиточных материалов определяют рабочую температуру детали. Пропитка особенно эффективна, когда деталь подвержена одновременно коррозии и абразивному или эрозионному износу. Обычно для пропитки применяют фенолформальдегидную смолу. Для высоких рабочих температур применяют пропитку покрытий из напыленного вольфрама медью и серебром.

Применяемые материалы. Для плазменного напыления используют порошки с размером частиц 20-150 мкм. Для окиси алюминия и двуокиси циркония размер частиц должен быть равным 40-70 мкм, для вольфрама 20-100 мкм. Для покрытий повышенной плотности размер частиц должен быть меньше и не превышать 10-40 мкм; для получения оптимального гранулометрического состава порошков их перед использованием следует просеивать.
Для получения жаростойких покрытий применяют следующие порошки: окись алюминия (глинозем) марок ГА85 или ГА8; двуокись циркония (90% ZrO2); вольфрам с частицами 40-100 мкм в виде порошка марки В или В-1. В качестве плазмообразующего газа используют азот концентрации 99,5% или водород чистотой 99,7% (марки А), или аргон.
Аппаратура. Для плазменного напыления используют специальные установки, выпускаемые промышленностью, например установки типа УМП-4-64 (рис. 77). Данная установка предназначена для напыления тугоплавких материалов: вольфрама, двуокиси циркония, окиси алюминия. При наличии камеры с защитной атмосферой можно также напылять карбиды, бориды, нитриды, силициды и другие соединения тугоплавких материалов. Установка состоит из плазменной горелки, порошкового питателя и пульта управления.
Для питания установки током используют сварочные преобразователи ПСО-500 (2 шт.) или полупроводниковые выпрямители ИПН-160/600 Рабочий газ - азот или смеси азотз, аргона или гелия с водородом Производитечьность установки по напьияемой окиси алюминия 3 кг/ч, напряжение при работе на азоте 85-90В, при смеси азота и водорода 100-120 В, рабочая сила тока на азоте 320-340 А, на смеси азота и водорода 270-300 А Устройство горелки для плазменного напыления показано на рис. 78.

Рис. 77. Установка УЧП-4-64 для плазменного напыления:
1 - горелка (плазмотрон); 2 - порошковый питатель; 3 - пульт управления



Рис. 78. Горелка для плазменного напыления:
1 - насадка для охлаждения напыляемой поверхности сжатым воздухом; 2 - сопло- анод; 3 - текстолитовая втулка; 4 - ниппель для ввода газа; 5 - медный корпус катода; 6 - вольфрамовый катод диаметром 3 мм; 7 - водоохлаждаемые кабели; 8 – рукоятка; 9 - свеча зажигания; 10 - асбоцементное кольцо

Технология плазменного напыления. Перед напылением поверхность детали подвергают пескоструйной обработке, желательно непосредственно перед процессом покрытия Помимо создания шероховатой поверхности, при опескоструивании удаляется пленка адсорбированного воздуха и влаги, препятствующая контакту между напыляемыми частицами и деталью Вместо кварцевого песка, который вреден, так как вызывает силикоз, применяют порошок корунда, карбида кремния и крошку белого чугуна При коррозионностойких материалах крошку белого чугуна применять не следует, так как его частицы, остающиеся на поверхности изделия, могут вызывать местную коррозию.
Перед напылением основного покрытия напыляют подслой из соответствующих материалов, указанных выше Наносить подслой можно любым способом - газопламенным, электродуговым.
При плазменном напылении поверхность не следует перегревать свыше температуры 300°С, так как при этом возникают внутренние напряжения, которые могут привести к разрушению покрытия Для предупреждения перегрева поверхность около места напыления охлаждают сжатым воздухом, поток которого направляют на покрытие с помощью дополнительного кольцевого сопла, окружающего мундштук горелки.
Применение охлаждающего сопла позволяет уменьшить расстояние от горелки до поверхности со 120 мм до 70 мм. Это повышает производительность оборудования, увеличивает коэффициент использования порошка, повышает прочность и снижает пористость покрытия Чрезмерное охлаждение недопустимо, так как ухудшает свойства покрытия. Охлаждение не требуется, если толщина слояпокрытия менее 0,1 мм или скорость перемещения горелки относительно поверхности достаточно велика, а нанесенный слой успевает охладиться до следующего прохода горелки. Это обеспечивается при массивных деталях в которых происходит интенсивный отвод теплоты.
Угол напыления, т.е. угол между осью сопла горелки и поверхностью, должен составлять 90-60°. При угле, меньшем 60°, энергия удара частиц о поверхность снижается, что ухудшает прочность покрьтия.
Дтя получения равномерного по толщине и однородного по качеству покрытия применяют различные средства механизации процесса. Наиболее простой и доступный из них - токарный станок, в патрон которого устанавливают напыляемую деталь, а в суппорт – горелку.
В качестве плазмообразующего газа рекомендуется применять азот. Добавление к азоту 5-10% водорода повышает производительность процесса, но требует источника тока с рабочим напряжением 110-120 В вместо 85-95 В при одном азоте. Аргон можно использовать только в смеси с водородом или азотом, так как при одном аргоне рабочее напряжение не превышает 35 В, что резко снижает тепловую мощность горелки и ее производительность.

Установка для создания плазменного покрытия используется в энергетическом и авиационном машиностроении для создания керамических функциональных покрытий.

Назначение комплекса:

Нанесение коррозионностойких, износостойких, уплотнительных, теплозащитных покрытий.

Характеристики установки:

ТСЗП MF-P-1000 работает на смеси газов: основной - аргон, дополнительный - азот, водород или гелий.

Состав оборудования

Система управления смонтирована в пылезащищенном шкафу

Модульная система контроллера позволяет использовать огромный спектр дополнительных коммуникационных и функциональных модулей, которые расширяют возможности ЦПУ.

Установка управляется с панели оператора. На ней отображаются параметры протекающих процессов, и осуществляется их контроль. Машинные данные преобразуются в кривые, гистограммы и графические объекты, которые меняют свой вид в зависимости от выбранной программы и от состояния процесса. Кроме того, выводимые на панель сообщения о неисправностях, обеспечивают оператора важной информацией о состоянии управляемой установки. С нее могут контролироваться все технологические параметры процесса, и в памяти могут оставаться до ста технологических программ.

Пульт управления установкой плазменного напыления

Блок газоподготовки для подачи газа в плазмотрон

Блок газоподготовки включает:

  • Металлические газовые линии
  • Датчик давления для каждого газа
  • Отдельные микрофильтры и электромагнитные клапаны для каждого газа
  • Детекторы утечки газа
  • Электронные расходомеры Bronkhorst El-Flow
  • Блок управления сжатым воздухом для охлаждения детали
  • Управление сжатым воздухом для охлаждения детали
  • Контроль расхода охлаждающей жидкости

Все данные с блока газоподготовки выводятся на панель оператора. Плазмообразующие газы: аргон, водород, азот, гелий. Система позволяет работать с одним или двумя плазмообразующими газами.Транспортирующий газ: аргон

Источник питания плазмотрона PPC 2002

Источник постоянного тока PPC 2002 выполнен по принципу высококачественного инвертирования постоянного тока, что обеспечивает плавное нарастание тока дуги.

Техническая характеристика

Габаритные размеры
Габаритные размеры

Порошковый дозатор состоит из двух миксеров, двух бункеров, двух дисковых приводов регулирования подачи порошка. Газовая система питателя составлена из предохранительных клапанов, двух ротаметров, электромагнитных вентилей, шлангов и дросселей.

Управление работой осуществляется на базе контроллера Simatic S7-300.

Питатель порошка может работать в автономном режиме или управляться с центральной панели оператора.

Емкость бункеров (колб) может быть 1,5 или 5 литров — их количество и объем оговаривается при подписании договора.

Техническая характеристика

Производительность одной колбы до 6 кг/час в зависимости от типа порошка.

Габаритные размеры

Габаритные размеры

Технические характеристики плазмотронов

Модель F4 – одна из самых распространенных. Доступны различные разъемы для подключения водяного охлаждения. Установка может поставляться с ручкой для ручного напыления. Устройство универсально с точки зрения широты задаваемых параметров — материала, твердости, пористости и шероховатости.

Для повышения качества напыления могут применяться различные сопла.

  • Обычно эксплуатируются с плазменными установками мощностью до 55 Квт
  • Обычно эксплуатируются с плазмообразующими газами Ar/H 2 , для некторых материалов могут применяться смеси Ar/He, Ar/N 2 или N 2 /H 2 ;

Плазмотрон F6

Аттестован авиацией, основан на классической модели F4. При сохранении базовой геометрии и основных параметров напыления, улучшенная система охлаждения позволяет существенно повысить производительность и продлить ресурс анода/катода. Кроме того, все части выполнены из бронзы, без применения пайки. Быстросъемные соединения позволяют осуществлять замену электродов за секунды. Фитинги шлангов водяного охлаждения соединены с базовой пластиной и не повреждаются в процессе замены электродов.

Для повышения качества напыления используются различные сопла.

  • Обычно эксплуатируются с плазменными установками мощностью до 55 Квт
  • с плазмообразующими газами Ar/H2, для некоторых материалов могут применяться смеси Ar/He, Ar/N2 или N2/H2;
  • Для увеличения качества напыления используются различные сопла: сопла Лаваля позволяют напыление с более высокими эффективностью и коeффициентом использования материала при пониженном уровне шума.

Плазмотрон Delta

Использование трех анодов и одного катода позволяет объединить преимущества всех известных технологий. Стабильная дуга обеспечивает производительность до 300 грамм порошка в минуту.

Модель дельта состоит из сопла, каскада, малоизнашиваемого контактного электрода и треханодного сегмента. Основной компонент легко заменяется. Это позволяет сокращать потери времени и оптимизировать плазмотрон под различные операции за счет замены сопел.

Благодаря эффективности и высокой производительности, используется для напыления покрытий на большие поверхности. Для мелких деталей не подходит в связи с большим пятном распыления.

Сравнение плазмотронов Delta со стандартными:

F4 / F6 / P2:

  • Единственная дуга
  • различные диаметры сопел
  • колебание напряжения +/-20V.
Delta:
  • Одна каскадируемая дуга, стабилизированная как аксиально, так и радиально
  • колебание напряжения +/-3V.
  • Постоянная передача плазменной энергии радиально впрыскиваемым частицам порошка. Дуга равномерно распределяется на три анода.
  • Не требуется корректировка положения порошковых инжекторов в зависимости от параметров напыления, т. к. положение трех оснований анодов сбалансировано радиально.

Технические характеристики:

  • Обычно эксплуатируются с плазменными установками мощностью до 70 Квт
  • Обычно эксплуатируются с плазмообразующими газами Ar/H2, для некторых материалов может применяться смесь Ar/He;
  • Благодаря высокой производительности и эффективности рекомендуется для напыления покрытий на большие поверхности. Не лучший выбор для маленьких деталей - довольно большое пятно распыления.

Плазмотрон P2

Размещение анода и катода полностью совпадают, что позволяет использовать базовые параметры напыления. Главное преимущество установки — компактность, которая достигается за счет короткого электрода. Нестандартный дизайн позволяет избежать негативных последствий как для продолжительности жизни электрода, так и для качества плазмы. Рекомендуется увеличение температуры для максимизации продолжительности работы. Стоит отметить, что катоды и аноды стоят значительно дешевле, чем для F4.

Технические характеристики:

  • Обычно эксплуатируются с плазменными установками мощностью до 55 Квт
  • Обычно эксплуатируются с плазмообразующими газами Ar/H2, для некторых материалов могут применяться смеси Ar/He, Ar/N2 или N2/H2;
  • Для увеличения качества напыления используются различные сопла: сопла Лаваля позволяют напыление с более высокими эффективностью и коeффициэнтом использования при пониженном уровне шума.

Общепринятая в авиации установка для осуществления напыления в отверстиях.

Обычно эксплуатируется с плазмообразующими газами Ar/H2. Совместим с плазменными установками мощностью до 500 А

Минимальный диаметр — 80 мм.

  • Обычно эксплуатируются с плазменными установками мощностью до 500 А
  • Обычно эксплуатируются с плазмообразующими газами Ar/H2,
  • Минимальный диаметр - 80 мм

Предназначен для напыления внутренних поверхностей диаметром от 90 мм.

Техническая характеристика плазмотрона F1

Плазмотрон F7, для внутреннего напыления

Установка разработана для напыления внутренних поверхностей.

Отличается улучшенным энергопотреблением, обычно используется при силе тока до 600 A.

Есть возможность охлаждения обрабатываемой детали воздушными соплами, которые встроены непосредственно в устройство. Минимальный диаметр напыляемого отверстия - 90 мм.

Преимущества:

  • Улучшенное по сравнению с F1 энергопотребление, обычно используется при силе тока до 600 A
  • Возможность охлаждения напыляемой детали воздушными соплами, встроенными в плазмотрон;
  • Минимальный диаметр напыляемого отверстия - 90 мм

Мощность изменяется в зависимости от выбранных катода и анода. Максимальная величина – 80 кВт.

Комплектуется удлинителем для напыления внутренних поверхностей.

Основными отличиями плазменной металлизации от других спо­собов расплавления являются более высокая температура и боль­шая мощность, что обеспечивает значительное повышение про­изводительности процесса и возможность наносить и расплавлять любые жаростойкие и износостойкие материалы (рис. 4.8). Для плазменного напыления используют газы аргон и азот, обеспечи­вающие температуру струи. Для плазменной металлизации широ­ко применяют установки УПУ и УМН, в комплект которых вхо­дят вращатель, защитная камера, дозатор порошка, источник пи­тания и пульт управления.

Основной частью установки служит плазмотрон, срок службы которого определяется стойкостью сопла. Период работы плазмотрона невелик, поэтому его быстроизнашивающиеся части де лают сменными. Источниками тока являются сварочные генера­торы ПСО-500 или выпрямители И ПН-160/600.

Рис. 4.8. Схема процесса плазменно­го напыления:

1 - порошковый дозатор; 2 - ка­тод; 3 - изоляционная прокладка; 4 - анод; 5 - транспортирующий газ; 6 - охлаждающая жидкость; 7 - плазмообразующий газ

В качестве плазмообразую­щего газа используют аргон или менее дефицитный и дешевый азот. Однако зажечь дугу в сре­де на азоте сложнее и требуется значительно большее напряже­ние, что представляет опасность для обслуживающего персонала. Применяют способ, при кото­ром зажигают дугу в среде арго­на с напряжением возбуждения и горения дуги меньше, а затем переходят на азот. Плазмообра­зующий газ ионизуется и выхо­дит из сопла плазмотрона в виде струи небольшого сечения. Обжа­тию способствуют стенки канала сопла и электромагнитное поле, возникающее вокруг струи. Тем­пература плазменной струи зависит от силы тока, вида и расхода газа и изменяется от 10000 до 30 000 °С; скорость истечения газов 100-1500 м/с. Аргонная плазма имеет температуру 15 000-30 000 °С, азотная - 10000-15000 °С.

При плазменной металлизации в качестве наносимого материа­ла применяют гранулированный порошок с размером частиц 50- 200 мкм. Порошок подается в зону дуги транспортирующим газом (азотом), расплавляется и переносится на деталь. Скорость полета частиц порошка 150-200 м/с, расстояние от сопла до поверхнос­ти детали 50-80 мм. Благодаря более высокой температуре нано­симого материала и большей скорости полета распыляемых час­тиц прочность соединения покрытия с деталью в этом методе вы­ше, чем при других способах металлизации.

Плазменная металлизация, происходящая при высокой тем­пературе плазменной струи, позволяет наносить любые матери-

алы, в том числе самые износостойкие, но при этом возникает проблема последующей обработки сверхтвердых и износостойких материалов.

Использование импульсного лазерного излучения, длительность которого составляет миллисекунды, позволяет получать минималь­ные зоны термического влияния, которые не превышают несколь­ких десятков микрон. Минимальные объемы расплава и минималь­ные тепловложения в подвариваемую деталь позволяют сократить продольные и поперечные деформации и тем самым сохранить прецизионные размеры детали в поле допуска - несколько мик­рон. Точность наведения и локальность действия луча лазера поз­воляет подваривать строго определенные геометрические участки детали, обеспечивая минимальный припуск на механическую об­работку, который составляет 0,2-0,5 мм. Так как при импульсной лазерной наплавке зоны термического влияния очень малы, под­ложка остается практически холодной, а скорость охлаждения жид­кой фазы расплава металла достигает 102-103 °С/с. В этих усло­виях имеет место процесс автозакалки, который приводит к фор­мированию чрезвычайно мелкодисперсной структуры, обладающей повышенной износостойкостью.

При сравнении практически все принципиальные технические различия технологии электродуговой наплавки и импульсной ла­зерной наплавки являются следствием того, что дуга является кон­центрированным сварочным источником энергии, а луч лазера - высококонцентрированным источником энергии. Импульсная ла­зерная наплавка по сравнению с электродуговой наплавкой характе­ризуется минимальными объемами расплава, зонами термического влияния и соответственно существенно меньшими поперечными и продольными усадками.

После электродуговой наплавки припуски могут достигать не­скольких миллиметров, что вызывает необходимость последую­щей механической обработки. Использование в качестве источни­ка энергии электрической дуги сопровождается ее силовым дейст­вием на жидкую фазу расплава металла, в результате образуются подрезы, которые не возникают при лазерной наплавке. Электродуговая наплавка требует предварительного и сопутствующего» подогрева мест наплавки и последующей термообработки и «и тип от лазерной наплавки.

Технология лазерной наплавки может быть использована для восстановления изношенных пресс-форм, штампов и устранения различных дефектов, образующихся в процессе изготовления пресс- форм и штампов. Виды дефектов, устраняемые с помощью лазер­ной наплавки: места пробы на твердость HRC, трещины, забоины, задиры, раковины и поры, разгарные трещины, места адгезионного схватывания. Технологический процесс лазерной наплавки пред­ставляет собой одновременный подвод к месту дефекта лазерного излучения и присадочной проволоки в среде инертных газов. При­садочный материал, расплавляясь, заполняет место дефекта. После лазерной наплавки требуется минимальная по сравнению с тради­ционными методами наплавки механическая обработка. Высокая точность наведения лазерного луча на место дефекта, локальность действия лазерного излучения позволяет наплавлять строго опре­деленные участки дефектных деталей (рис. 4.9).

Кратковременность протекания процесса, длительность импуль­са лазерного излучения, составляющая несколько миллисекунд, а также точная дозировка энергии обеспечивают минимальные зоны термического влияния и отсутствие поводок детали. Лазерная на­плавка позволяет значительно снизить трудоемкость ремонта ос­настки и, как следствие, себестоимость за счет исключения из про­цесса предварительного подогрева, последующей термообработки, необходимости снятия хромистого покрытия с поверхности и пос­ледующего его нанесения, если де­таль хромированная. Преимущес­тва лазерной наплавки указаны в табл. 4.2.

Для предотвращения окисления расплавленного металла зону на­плавки защищают инертными га­зами, например, смесью аргона с гелием. Для наплавки крупногаба­ритных узлов (длиной до несколь­ких метров) используют твердо­тельные лазерные установки, ос­нащенные оптоволоконными сис­темами. Разработана технология устранения дефектов в виде горячих и холодных несквозных трещин, образующихся при электродуговой сварке штучными электродами, с использованием импульсного лазерного излучения твердотельных лазеров.

Заварка нескольких трещин с использованием импульсного лазерного излучения позволяет реализовать так называемый «холодный» режим сварки, при котором не происходит разогрев сварного шва ремонтируемой зоны, что позволяет сохранить механическую прочность сварного соединения и избежать отпуска металла в шве.

Использование оптоволоконной системы длиной несколько мет­ров позволяет производить ремонт в самых труднодоступных по гео­метрии местах. Данную технологию можно использовать для уст­ранения различных дефектов, образующихся при электродуговой сварке, - трещин, как холодных, так и горячих, раковин, крате­ров, свищей, подрезов.

По характеру и условиям работы боковая поверхность лопа­ток турбин высокого давления подвергается микроповреждени­ям механического, химического и термического влияния. Анализ повреждаемости показывает, что около 70 % от их общего чис­ла составляют детали с поверхностными дефектами глубиной до 0,4-2,0 мм. Использование оптоволоконных систем доставки лу­ча лазера к месту дефекта открывает возможность ремонта лопат­ки турбины без ее демонтажа. Величина зоны термического влия ния не превышает 15 мкм. Структура наплавленного слоя мелко­дисперсная.


Рис. 4.11. Поперечное сечение в месте непропая трубки секции холодильника


Рис. 4.12. Шлиф места дефекта, обработанного в режиме сварки-пайки

В процессе изготовления водяных секций могут возникать де­фекты в виде непропаев. Разработана технология устранения негерметичности секций методом импульсной лазерной пайки-свар­ки (рис. 4.11 и 4.12).

Для устранения негерметичности паяного шва используется им­пульсное лазерное излучение твердотельного лазера. Встроенная в излучатель лазера телевизионная система с использованием целе­указания на основе Не - Ne (гелий - неон) лазера позволяет точ­но наводить луч лазера на место дефекта. Оснащение лазера опто­волоконной системой позволяет производить устранение дефектов в труднодоступных местах и производить быстрый переход с одно­го дефекта на другой.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Строительный журнал