Строительный журнал

Крыло конечного размаха вследствие скоса потока обладает дополнительным, по сравнению с профилем, индуктивным сопротивлением. Исходя из зависимости (8.13), получим формулу для определения коэффициента подъемной силы крыла с учетом скоса потока. Так как , то , или .

Отсюда производная равна

Наглядно видно, что величина в силу конечной величины размаха крыла становится меньше, чем для профиля (крыла бесконечного размаха). С уменьшением коэффициент подъемной силы крыла уменьшается (рис. 8.24). При прочих равных условиях для получения подъемной силы одной и той же величины крыло конечного размаха должно иметь больший угол атаки, чем крыло бесконечного размаха.

Дополнительное индуктивное сопротивление приводит к изменению формы поляры крыла, в сравнении с полярой профиля, и ее смещению в сторону увеличения сопротивления. Графически коэффициент индуктивного сопротивления представляет в координатах параболу индуктивного сопротивления (рис. 8.25). В конечном итоге, это приводит к уменьшению качества крыла по сравнению с качеством профиля этого крыла.

Формула (8.14) для получена применительно к крылу, форма в плане которого обеспечивает равномерное распределение индуктивной скорости и угла скоса потока по размаху крыла. Этим требованиям отвечает крыло эллиптической формы в плане (изменение хорды профиля происходит по зависимости , где – корневая хорда), обеспечивающее эллиптическое распределение циркуляции скорости по размаху и наименьшее индуктивное сопротивление. Применительно к крыльям произвольной формы в плане для определения можно пользоваться соотношением, которое учитывает влияние формы крыла в плане:

При малых углах атаки вся поверхность крыла обтекается без отрыва. При умеренных и больших углах атаки зависимости и становятся нелинейными из-за отрыва потока на верхней поверхности крыла, возникающего вблизи кормовой оконечности крыла. Место отрыва потока с ростом перемещается против потока к передней оконечности. При углах атаки больших наблюдается общий отрыв потока с поверхности крыла, что приводит к резкому падению подъемной силы крыла.

Отрыв потока у стреловидных крыльев с острыми кромками происходит на боковых и передних кромках уже при умеренных углах атаки. Вихри, образовавшиеся в результате отрыва потока с передних кромок, создают на верхней поверхности дополнительное разрежение, которое вызывает перераспределение аэродинамической нагрузки по крылу. В результате этого подъемная сила крыла возрастает, а зависимости и становятся нелинейными (рис. 8.26).

Приближенно определить коэффициент подъемной силы с учетом дополнительной силы за счет отрыва потока на передней кромке можно по следующей формуле: .


Коэффициент А зависит от угла стреловидности передней кромки , удлинения и сужения крыла.

Экспериментальные данные показали, что для крыльев с различными геометрическими параметрами, но одинаковыми значениями коэффициент А практически одинаков.


С увеличением значения , т. е. с ростом или уменьшением нелинейная составляющая коэффициента подъемной силы уменьшается.

Таким образом, были рассмотрены основные характеристики элементов летательных аппаратов, создающих подъемную силу, проведены расчеты значения коэффициента сил для профилей и крыльев в широком диапазоне скоростей.

Контрольные вопросы и задания

1. Дайте определение аэродинамического качества К. Аэродинамическое качество какого объекта больше: изолированного профиля или крыла конечного размаха и почему?

2. Несущее крыло располагается на некотором расстоянии от носовой оконечности самолета. Чем определяется его местоположение? Его размах?

3. Какой угол атаки профиля (крыла) называют критическим и почему?

4. Из каких составляющих складывается лобовое сопротивление профиля при закритических скоростях полета?

5. Исходя из каких соображений для расчета удлинения крыла любой формы в плане предложена формула , где l – размах крыла, а S – его площадь в плане?

6. Что является причиной возникновения индуктивного сопротивления крыла конечного размаха? Что происходит с потоком газа около крыла конечного размаха? Для какого крыла характерно равномерное распределение индуктивной скорости и угла скоса потока по его размаху?

7. У самолета с полетной массой 60 т, совершающего полет с постоянной скоростью на высоте h равной 10 км, подъемную силу создает крыло, размах которого l равен 35 м, а удлинение равно 6. Рассчитайте скорость полета самолета и силу тяги, развиваемую силовой установкой самолета, если коэффициент подъемной силы крыла » 1, а коэффициент силы лобового сопротивления самолета равен 0,2.

8. На самолетах применяются различного рода устройства, увеличивающие несущую способность крыла при одном и том же взлетном весе аппарата и снижающие его минимальную скорость полета. Такие устройства основаны либо на изменении кривизны средней линии профиля, либо на изменении площади несущей поверхности крыла, либо сдуве (отсосе) пограничного слоя с верхней поверхности крыла или его закрылка. На основе анализа зависимости и физической картины течения на верхней поверхности крыла покажите, в чем причина увеличения несущей способности крыла (т. е. ) при сдуве (отсосе) пограничного слоя.

9. К какому крылу имеет отношение такое понятие, как докритическая (критическая, закритическая) передняя (задняя) кромка?

10. Каким образом можно свести к нулю влияние концов крыла на его аэродинамические характеристики при сверхзвуковых скоростях полета?

11. Почему отрыв потока на верхней поверхности обычного крыла уменьшает создаваемую им подъемную силу, а у стреловидных крыльев с острой передней кромкой – увеличивает ее?

Один человек сказал: «Не чего не должно мешать крылу лететь». Крылу не нужны такие излишества как фюзеляж или какие-нибудь наплывы или ещё что-нибудь, что портит его аэродинамику. Когда всё убирается внутрь крыла получается очень изящные конструкции, которые радуют не только своим эстетичным видом но и не плохими лётными характеристиками.
Лично я обожаю летающие крылья из-за их простоты постройки. Но не стоит недооценивать летающее крыло. Самая большая проблема в проектировании ЛК это расчёт и подгонка центровки. Следующая фраза гласит: «Лучший самолёт это тот, у которого нет запаса». Все характеристики и конструктив должен быть подобран таким образом, чтобы решать текущие задачи и при этом не развалится в воздухе (у меня, кстати, такое было).

Год назад я думал о том, как построить собственное летающее крыло для пробы своих же сил. Я осознавал, что теорию знаю, но как применить эти знания на практике не догадывался. И чтобы систематизировать свои знания решил написать на Matlab r2009, что-то вроде калькулятора приблизительного расположения фокуса летающего крыла (ЛК). И получилась программа, на входе которой был текстовый файл характеристик крыла


А на выходе такая картинка


Данный алгоритм был представлен в статье на форуме http://www.rcdesign.ru/ Несущие крылья. Часть 2. Геометрия крыла.

Но я на этом не остановился и решил развить эту идею. Основная идея программы быстро превратить свою идею крыла в некие численные массогабаритные характеристики. И я добавил в программу расчёт центров тяжести, и перевёл ЛК в 3D. И в итоге получилась программа, которая может так.


возможности программы

программа способна рассчитывать:
- площадь крыла в плане
- площадь крыла в поперечной плоскости
- масса крыла
- масса оборудования крыла
- общая масса кр+оборуд
- общий центр тяжести X,Z
- фокус крыла по тангажу X,Z
- фокус крыла по рысканью X,Z
- нагрузку на крыло
-
программы выдаёт в трехмерном изображении
- геометрию крыла
- геометрию элементов
- расположение фокуса крыла в плане
- расположение фокуса в поперечной плоскости
- расположение центра тяжести крыла
- расположение центра тяжести оборудования
- расположение общего центра тяжести

Программа генерирует
- кривые профилей для построения в программе SolidWorks.
- Облака точек геометрии элементов в программе SolidWorks.

Набор данных параметров позволяет оценить характеристики ЛК.

Минусы программы
- низкая интерактивность
- недружелюбный интерфейс
- требуется знание Matlab

Работа с программой

Подготовка файлов

WinDev - папка содержащая программу предварительного расчёта летающих крыльев;
fanwing - папка с текстовыми файлами описывающими летающее крыло;
STEST - папка с сохраненными в текстовом формате кривых профилей и облака точек для SolidWorks.

Настройка работы программы

далее нужно обязательно настроить программу для правильной работы
- заполнить плотность материала, на основе которого будет считаться масса крыла, если оно выполнено из цельного куска.
- Настроить корневой каталог это сделано для того чтобы проще было переносить программу с одного компьютера на другой.
- Настроить расположение и название файлов, которые описывают геометрию крыла, геометрию профиля крыла, и геометрию и массовые характеристики элементов оборудования ЛК

Файл с описанием геометрии крыла

Тут крыло строится по набору хорд и описаний к ним.
Первый столбик это длины хорд в метрах.
Второй это фактический размах до хорды.
Смещение ¼ это смещение ¼ от хорды параллельно продольной оси самолёта изменяя это расстояние изменяется стреловидность крыла.
V - это угол Vобразности крыла при помощи этого возможно делать также и винглёты.
КН - это коэффициент толщины профиля.

Файл с описанием элементов конструкции

Файл с описанием профиля

Верхняя строка это проценты от хорды
Вторая строка это проценты от длинны хорды вверх
Вторая строка это проценты от длинны хорды вниз

Такие описания можно взять в атласе профилей.

Расчет аэродинамических характеристик крыла с использованием программного комплекса ANSYS CFX

Создание летательного аппарата нового поколения невозможно без анализа его аэродинамических характеристик еще на ранних стадиях проектирования. От глубины исследования формы несущих поверхностей и обводов планера напрямую зависят летно-технические характеристики разрабатываемого самолета. Развитие теоретических основ численных методик расчета аэродинамических характеристик летательных аппаратов можно разделить на несколько этапов:

  • линейная теория (60-е годы);
  • нелинейная теория полного потенциала скорости (70-е годы);
  • уравнения Эйлера (80-е годы);
  • уравнения Навье — Стокса, осредненные по Рейнольдсу (90-е годы).

Физику процесса обтекания тела произвольной формы потоком газа наилучшим образом отражают методики, основанные на решениях уравнений Навье — Стокса. С появлением программных средств, базирующихся на численных решениях уравнений Навье — Стокса, стало возможно получить расчетным путем ряд важных аэродинамических характеристик самолета, в частности вычислить максимальное значение коэффициента подъемной силы Cy max . При расчетах аэродинамических характеристик объектов сложной пространственной конфигурации с использованием такого подхода требуются большие объемы оперативной памяти компьютера, поскольку допустимые размеры расчетной сетки пропорциональны объему оперативной памяти компьютера. Рост возможностей вычислительной техники, наблюдаемый в последние годы, позволяет применять программы, основанные на численных решениях уравнений Навье — Стокса, для расчета характеристик обтекания таких объектов, как самолет. Одной из популярных коммерческих программ в этой области является ANSYS CFX (лицензия ЦАГИ № 501024).

Использование CFX в области авиастроения является рациональным, поскольку пакет ANSYS, помимо аэродинамического модуля CFX, содержит ряд других вычислительных модулей (STRUCTURAL, FATIQUE и д.р.), что обеспечивает возможность совместного решения задач аэродинамики, аэроупругости и прочности.

Рассмотрим особенности расчета обтекания прямого крыла бесконечного размаха с профилем GA(W)-1. Этот профиль был создан известным американским аэродинамиком Уиткомбом для применения на дозвуковых скоростях полета.

Комплекс ANSYS оснащен встроенными интерфейсами ряда основных CAD-программ. Геометрическая модель, созданная в программе трехмерного графического моделирования, считывается любой из программ комплекса. Твердотельная геометрическая модель отсека крыла, сохраненная в формате Parasolid, была импортирована в профессиональный сеточный генератор ANSYS ICEM, где методом Octree была построена неструктурированная расчетная сетка, состоящая из 3 млн объемных тетраэдрических элементов (рис. 1). Вблизи поверхности крыла параметры Tetra Size Ratio и Height Ratio были равны 1.2. Максимальный размер элементов на передней кромке крыла составил 1 мм. Для обеспечения нужной точности решения и сходимости расчета элементы расчетной сетки имели Aspect Ratio более 0.3 и Min Angle более 20°. Кроме того, необходимо, чтобы габаритные размеры расчетной области многократно превышали характерный размер исследуемого объекта. В данном случае использовалась прямоугольная расчетная область длиной 35 и высотой 30 м. Размах крыла равен 4 м, а хорда крыла — 3,3 м. Моделирование крыла бесконечного размаха осуществлялось путем задания в препроцессоре CFX-PRE справа и слева от крыла граничных условий типа Symmetry. Типы граничных условий, используемых в данной задаче, показаны на рис. 2.

В пристеночных областях при построении расчетной сетки для наилучшего моделирования пограничного слоя образованы слои призматических элементов (см. рис. 1). При решении задачи обтекания крыла (где одной из расчетных величин является касательное напряжение) очень важно контролировать величину Y+ . Значение Y+ характеризует относительную высоту первой ячейки пограничного слоя, которая задается в ICEM при построении призматических элементов. После окончания вычислений в среде постпроцессора CFX-POST можно визуализировать Y+ на расчетной модели (рис. 3).

При использовании методик, основанных на численных решениях уравнений Навье — Стокса, качество полученного результата во многом зависит от выбора модели турбулентности. В программном комплексе ANSYS CFX реализовано достаточно большое число моделей турбулентности. Однако ни одна из них не является универсальной для всех существующих классов задач. Из многообразия моделей турбулентности, используемых при расчетах аэродинамических характеристик, можно выделить известные модели турбулентности k -ε и k -ω. Они являются двупараметрическими моделями турбулентности, которые базируются на рассмотрении кинетической энергии турбулентных пульсаций k . В качестве второго уравнения применяют уравнение либо переноса скорости диссипации турбулентной энергии ε, либо удельной скорости диссипации энергии ω. Модель переноса касательных напряжений SST (двухслойная модель Ментера) использует модель k -ω в пристеночной области и преобразованную модель k -ε вдали от стенки. В новые версии программы CFX включен бета-вариант модели турбулентности Spalart-Allmaras (S-A). Эта модель является однопараметрической, использующей одно дифференциальное уравнение переноса.

Расчеты с применением программного комплекса ANSYS CFX проводились на сервере с 8-ядерным процессором Intel Xeon 2,83 ГГц и 16 Гбайт ОЗУ. Для получения стационарного решения в зависимости от типа модели турбулентности и угла атаки крыла потребовалось осуществить 40-60 итераций.

Вычисления проводились при числе Маха 0,2 и числе Рейнольдса 2,2Ѕ106. В препроцессоре ANSYS CFX отсутствует возможность напрямую задавать число Рейнольдса. В связи с этим число Рейнольдса вычислялось в CFX-PRE по величине статического давления, соответствующего определенному коэффициенту кинематической вязкости.

В результате проведенных расчетов были получены величины сил и моментов, действующих на отсек крыла на заданных углах атаки. Зависимость коэффициента подъемной силы Сy от угла атаки сравнивалась с аналогичными экспериментальными данными, полученными американскими специалистами NASA Венцем и Ситхарамом (SAE Paper 740365). На линейном участке все рассмотренные модели турбулентности продемонстрировали удовлетворительное совпадение расчетных и экспериментальных данных. В зоне Сy max максимальное соответствие с экспериментальными данными показала модель турбулентности SST (рис. 4). С использованием постпроцессора CFX-POST файл с результатами расчета позволяет визуализировать картину обтекания крыла. Линии тока и поле скоростей хорошо иллюстрируют отрывное течение, соответствующее углу атаки, при котором достигается Cy max крыла (рис. 5).

Таким образом, в результате выполненной работы показано, что при расчетах характеристик обтекания аэродинамических поверхностей использование модели турбулентности SST приводит к более высокому результату.

где -удлинение крыла,

L – размах крыла, м, L=8 м,

S – площадь крыла, м 2 , S=12 м 2.

где η - сужение крыла

b o - корневая хорда, м, b o = 5,43 м,

b k - концевая хорда, м, b k =2,5 м.

Удлинение крыла

Угол стреловидности: 0 0

      Определение нагрузок, действующих на крыло

Нагрузки, действующие на крыло: для заданного случая нагружения определяем коэффициенты безопасности и максимальной эксплуатационной перегрузки. Величины эксплуатационных перегрузок в зависимости от максимального скоростного напораи полётной массыопределим по таблице типов самолетов.

Для данного типа самолёта принимаем n э = 8.

Исходя из случая нагружения, коэффициент безопасности выбираем f=2.

Расчётную перегрузку определим по формуле .

Следовательно n р = 8 × 2 = 16.

Случай соответствует криволинейному полёту с(отклоненные элероны или выход из пикирования) и с максимально возможной скоростью, соответствующей скоростному потокуq max . max . Заданными величинами являются ,;.

Этот случай характерен для нагружения хвостовой части крыла. Вследствие перемещения назад центра давления на крыло действует значительный крутящий момент.

Расчетная аэродинамическая нагрузка прямого крыла определяется по формуле:

где G – вес самолета, кг, G = 17000 кг,

относительная циркуляция по размаху прямого крыла, учитывающая изменение коэффициента подъемной силы крыла по размаху и сужению крыла.

Для стреловидного крыла значение должно быть уточнено поправкой, учитывающей стреловидность крыла. Значения величиниснимаем с графиков. Тогдарассчитываем по формуле:

Массовые силы конструкции крыла определяем по формуле:

где - вес крыла,= 0,11.

Массовые силы от веса топлива определяем по формуле:

где - вес топлива,,кг.

Все расчеты сводим в таблицу 1.

Таблица 1

Величина

По расчетным данным строим эпюру расчетной аэродинамической погонной нагрузки, эпюру расчетной массовой погонной нагрузки, эпюру расчетной суммарной погонной нагрузки (рис. 1).

Рис.1 Эпюры ,и

      Построение расчетных эпюр

Исходными данными для расчета крыла на прочность являются эпюры перерезывающих сил , изгибающихи крутящих моментов, построенные вдоль размаха крыла.

При построении эпюр крыло представляют как двухопорную балку с консолями, нагруженную распределенными и сосредоточенными силами. Опорами являются узлы крепления крыла к фюзеляжу.

Определяем реакции опор:

Эпюры,нужно строить от суммарной нагрузки

Используя дифференциальные зависимости:

получаем выражения идля любого сечения крыла:

Для каждого участка находим приращение перерезывающей силы:

.

Суммируя значения от свободного конца и учитывая значения сосредоточенных грузов и реакций фюзеляжа, получаем значение перерезывающей силы в произвольном- ом сечении крыла

.

Аналогично определяем значение изгибающего момента в любом сечении крыла:

, .

Приняв количество сечений i = 10, ∆z = 0,5 м.

С учётом стреловидности крыла перерезывающую силу и изгибающий момент определим по формулам:

где - угол стреловидности.

Результаты сведены в таблицу 2.

Таблица 2

По полученным данным строим эпюру изгибающих моментов (рис.2).

Для построения эпюр крутящих моментов, истинный крутящий момент должен быть определён относительно центра изгиба (жёсткости). Примем координату положения линии центров изгиба (жёсткости):

х ж = 0,38в СЕЧ.

Тогда а = 0,2b СЕЧ, а 1 = 0,4b СЕЧ.

Погонный крутящий момент в любом сечении относительно линии центров изгиба, оси определяется следующим образом:

Полный крутящий момент будет равен:

При наличии стреловидности :.

Эпюра строится только до борта фюзеляжа. При определениитакже удобно пользоваться методом трапеций с применением таблицы 3:

Где ; .

Таблица 3

Рис. 2 Эпюры погонного крутящего момента m и крутящего момента .

      Проектировочный расчет крыла

На данном этапе подберём величины площади поперечных сечений силовых элементов крыла. Силовая схема крыла – двухлонжеронная, аэродинамический профиль сечения NASA2411 .

Определяем угол конусности крыла:

где -относительная толщина профиля.

Отсюда .

Перерезывающая сила в расчетном сечении равна:

где и-высота первого и второго лонжеронов,

Модуль упругости материалов поясов.

От перерезывающих сил в стенках лонжеронов действуют погонные касательные силы:

Погонные касательные силы в стенках лонжеронов от крутящего момента:

где -площадь контура межлонжеронной части сечения.

Суммарные касательные потоки в стенках лонжеронов от перерезывающих сил и крутящих моментов:

Толщины стенок лонжеронов и обшивки определяются по следующим формулам:

где - разрушающее касательное напряжение.

Берем шаг стрингеров 118 мм, получаем количество стрингеров

Определяем силы, действующие на верхней и нижней панелях крыла:

Где высота сечения,

Число стрингеров,

Ширина межлонжеронной части крыла.

Коэффициент 0,9 в величине учитывает ослабление обшивки отверстиями под заклепки.

Суммарная площадь растянутых и сжатых поясов лонжеронов:

Для сжатых поясов,

- для растянутых поясов,

где принимаем равным.

Одним из важных этапов строительства авиамодели является расчет и проектирование крыльев. Для того, чтобы правильно спроектировать крыло, необходимо учесть несколько моментов: правильно выбрать корневой и концевой профили, правильно их выбрать исходя из нагрузок, которые они обеспечивают, а также правильно спроектировать промежуточные аэродинамические профиля.

С чего начинается конструирование крыльев

В начале конструирования на кальке был сделан предварительный эскиз самолёта в натуральную величину. В ходе этого этапа я определился с масштабом модели и с размахом крыльев.

Определение размаха

Когда предварительный размах крыла был утвержден, наступило время для определения веса. Эта часть расчета имела особое значение. Первоначальный план включал в себя размах крыльев в 115 см, однако, предварительный расчет показал, что нагрузка на крыльях будет слишком высокой. Поэтому я масштабировал модель до размаха в 147 см без учета законцовок крыльев. Такая конструкция оказалась более подходящей с технической точки зрения. После расчета мне осталось сделать весовую таблицу со значениями весов. В свою таблицу я также добавил усредненные значения веса обшивок, например, вес бальзовой обшивки самолёта был определен мной, как произведение площади крыла на два (для низа и верха крыла) на вес квадратного метра бальзы. Тоже самое было сделано для хвостового оперения и рулей высоты. Вес фюзеляжа был получен путем умножения площади боковой стороны, а также верха фюзеляжа на два и на плотность квадратного метра бальзы.

В результате я получил следующие данные:

  • Липа, 24 унции на кубический дюйм
  • Бальза 1/32’’, 42 унции на квадратный дюйм
  • Бальза 1/16’’, 85 унций на квадратный дюйм

Устойчивость

После определения веса были рассчитаны параметры устойчивости для того, чтобы убедиться, что самолёт будет устойчивым и все детали будут адекватного размера.

Для устойчивого полёта необходимо было обеспечить несколько условий:

  1. Первый критерий — значение средней аэродинамической хорды (САХ). Его можно найти геометрическим путем, если добавить к корневой хорде с двух сторон концевую, а к концевой хорде с двух сторон корневую, а потом соединить крайние точки вместе. В точке пересечения и будет находится центр САХ.
  2. Значение аэродинамического фокуса крыла составляет 0,25 от значения САХ.
  3. Этот центр необходимо найти как для крыльев, так и для рулей высоты.
  4. Далее определяется нейтральная точка самолёта: она показывает центр тяжести самолета, а также вычисляется вместе с центром давления (центром подъемной силы).
  5. Далее определяется статическая граница. Этот критерий оценивает устойчивость самолёта: чем он выше, тем больше устойчивость. Однако, чем более устойчивее самолёт, тем он более маневренный и менее управляемый. С другой стороны на слишком неустойчивом самолёте тоже нельзя летать. Среднее значение этого параметра — от 5 до 15%
  6. Также рассчитываются коэффициенты оперения. Эти коэффициенты используются для сравнения эффективности аэродинамики руля высоты через соотношение размеров и расстояния до крыла.
  7. Коэффициент вертикального оперения обычно находится между 0,35 и 0,8
  8. Коэффициент горизонтального оперения обычно между 0,02 и 0,05

Выбор правильного аэродинамического профиля

Выбор правильного профиля определяет правильное поведение самолёта в воздухе. Ниже я привожу ссылку на простой и доступный инструмент для проверки аэродинамических профилей. В качестве основы для выбора профилей я выбрал концепцию, согласно которой длина хорды на законцовке крыла равна половине длины хорды в корневой части. Наилучшее решение того, чтобы не допустить срыв потока на крыле, которое я нашел, заключалось в резком сужении крыла на законцовке без возможности сохранения управления самолётом до набора достаточной скорости. Я добился этого с помощью разворота крыла вниз на конце и через тщательный подбор корневых и концевых профилей.

В корне я выбрал аэродинамический профиль S8036 с толщиной крыла в 16% от длины хорды. Такая толщина позволила заложить лонжерон достаточной прочности, а также выдвижные шасси внутри крыла. Для концевой части был выбран профиль – S8037, который также имеет толщину в 16% от толщины хорды. Такое крыло будет уходить в срыв при большом коэффициенте подъёмной силы, а также при большем угле атаки, чем S8036 при том же числе Рейнольдса (этот термин служит для сравнения профилей разного размера: чем больше число Рейнольдса, тем больше хорда). Это значит, что при том же числе Рейнольдса в корневой части крыла срыв произойдет быстрее, чем на законцовке, но контроль за управлением сохранится. Однако, даже если длина хорды корня в два раза больше длины хорды законцовки, она имеет число Рейнольдса в два раза большее, а увеличение числа приведет к задерживанию сваливания. Именно поэтому, я развернул законцовку крыла вниз, так что оно перейдет в сваливание только после корневой части.

Ресурс для определения аэродинамических профилей: airfoiltools.com

Теория по основам конструирования крыльев

Конструкция крыла должна обеспечивать достаточную подъёмную силу для веса самолёта и дополнительных нагрузок, связанных с маневрированием. В основном это достигается с помощью использования центрального лонжерона, который имеет два пояса, верхний и нижний, каркаса, а также тонкой обшивки. Несмотря на то, что каркас крыла тонкий он обеспечивает крылья достаточной прочностью на изгиб. Также в конструкцию часто входят дополнительные лонжероны для уменьшения лобового сопротивления в передней части задней кромки. Они способны воспринимать как изгибающие нагрузки, так и увеличивать жесткость при кручении. Наконец передняя кромка может быть отодвинута назад за лонжерон для получения закрытого поперечного каркаса, который называется D-образным и служит для восприятия крутильных нагрузок. На рисунке наиболее часто встречающиеся профиля.

  1. Верхнее крыло имеет лонжерон двутаврового сечения, у которого каркас располагается в центре, а также переднюю кромку с обшивкой, которая называется D – трубкой. D – трубка позволяет увеличить жесткость при кручении, и может быть добавлена к любым другим конструкциям лонжеронов, а также может быть расширена до задней кромки для создания полностью обшитого крыла. У данного крыла задний лонжерон просто является вертикальной опорой. Также имеется простая плоскость управления, проще говоря, закрылок, подвешенный шарнирно вверху. Такую конструкцию легко воспроизвести.
  2. Второе крыло имеет C – образный лонжерон, который имеет усиленный основной лонжерон, лучше приспособленный для восприятия лобовых нагрузок. Крыло снабжено центральным шарниром, который уменьшает щель, а также лобовое сопротивление по сравнению с верхним шарниром.
  3. У третьего профиля лонжерон в виде трубы, такие обычно делаются из пластиковых трубок, их удобно изготовлять, но если трубки непрямые или скрученные, то скрутить крыло может стать проблемой. Частично проблему можно решить, используя дополнительно D – образную трубку. Кроме того, лонжерон сделан из С – образного профиля, что значительно увеличивает жесткость крыла. Петля представляет собой округленный профиль с точкой разворота в центре закругленной передней кромки для уменьшения петельной щели и для ровных краев.
  4. Четвертый профиль имеет полностью коробчатый лонжерон с каркасом как спереди, так и сзади. Зазор имеет ту же особенность, что и предыдущий профиль, и ту же самую плоскость управления. Но у него есть обтекатели сверху и снизу для скрытия щели.

Все эти конструкции крыльев являются типовыми для лонжеронов и для создания крепежных петель у радиоуправляемых самолётов. Эти конструкции без исключения являются единственным способом технической реализации закрылков и элеронов, а другие различные решения можно подогнать к ним же.

C – образный или коробчатый лонжерон?

Для своего самолёта я выбрал деревянный C – образный профиль лонжерона с прочной передней кромкой и простым вертикальным лонжероном. Полностью крыло обшито бальзой для создания жесткости при кручении и для эстетики.

Дерево было выбрано взамен пластиковой трубки поскольку самолёт спроектирован с 2 градусным внутренним углом, а соединение в виде пластиковой трубки в центре крыла не сможет долго сопротивляться изгибающим нагрузкам. C – образный профиль лонжерона является также более благоприятным по сравнению с двутавровым профилем, поскольку в лонжероне должен быть сделан слот на всю его длину для установки в решетку. Эта добавленная сложность не за счет заметного увеличения прочности и соотношения веса лонжерона. Коробчатый лонжерон также был отвергнут, поскольку он сильно увеличивает вес, однако, его не так сложно построить, а по прочности он один из лучших. Простой вертикальный лонжерон, совмещенный с петлевым обтекателем, вот таким был выбор конструкции крыла, когда остальная часть крыла обшита и достаточно прочна без каких либо дополнительных опор.

  • Лонжерон. Лонжерон крыла спроектирован для восприятия изгибающей нагрузки от подъёмной силы крыла. Он не предназначен для восприятия скручивающей силы, созданной аэродинамическими силами крыла, а нагрузка ложится на обшивку крыла. Это распределение нагрузки подходит для легкой и очень эффективной нагрузки, поскольку каждая деталь занимает именно своё место.
  • Полки лонжеронов крыла выполнены из броска липы размерами ¼ x ½ x 24’’. Липа была выбрана в качестве материала, поскольку хорошо обрабатывается и имеет хорошую прочность для своего веса. Кроме того, подкупает простота приобретения брусков подходящего размера в специализированных магазинах, поскольку у меня не было под рукой деревообрабатывающего станка для распиловки досок.
  • Каркас крыла сделан из липового листа, толщиной 1/32”, который крепится к полкам лонжеронам сверху и снизу. Подобный каркас является необходимостью поскольку он кардинально улучшает жесткость и прочность крыльев даже при очень малом весе.
  • Задняя кромка крыла/задний лонжерон выполнен из бальзового листа толщиной 1/16”, что помогает добавить жесткость при кручении, а также унифицировать нервюры крыла и крепить плоскости управления к задней части нервюр.

Проектирование нервюр с помощью AutoСAD

Оказывается, изготовление нервюр для трапециевидного крыла может стать вдохновляющим занятием. Есть несколько методов: первый метод основан на вырезании профиля крыла по трафарету сначала для корневой части, а потом для законцовки крыла. Он заключается в сочленении обоих профилей вместе с помощью болтов и вычерчивании по ним всех остальных. Этот метод особенно хорош для изготовления прямых крыльев. Основное ограничения метода – он подходит только для крыльев с незначительным сужением. Проблемы возникают из-за резкого роста угла между профилями при значительной разнице между хордой законцовки и хордой корня крыла. В этом случае во время сборки могут сложности из-за большого отхода дерева, острых углов и краёв нервюр, которые надо будет удалить. Поэтому я воспользовался своим методом: сделал свои собственные шаблоны для каждой нервюры, а затем обработал их так, чтобы получить идеальную форму крыла. Задача оказалась сложнее, чем я ожидал, поскольку шаблон корневой части отличался от законцовки кардинально, а все профиля между ними были комбинацией двух предыдущих, вместе с кручением и растяжением. В качестве программы проектирования я использовал Autodesk AutoCAD 2012 Student Addition, поскольку съел на этом собаку при моделировании RC моделей самолётов в прошлом. Проектирование нервюр происходит в несколько этапов.

Всё начинается с импорта данных. Самый быстрый способ для импорта аэродинамического профиля (профили можно найти в базах данных UIUC аэродинамических профилей) в AutoCAD, который я нашел, заключается в создании табличного файла в формате excel в виде таблицы с колонками координат точек профиля x и y. Единственное, что следует перепроверить — соответствуют ли первая и последняя точка друг другу: получается ли у вас замкнутый контур. Затем скопировать полученное назад в txt файл и сохранить его. После того, как это проделано, следует вернуться назад и выделить всю информацию на предмет, если вы случайно вставили заголовки. Затем в AutoCAD запускается команда «spline» и «paste» для обозначения первой точки эскиза. Жмем «enter» до конца выполнения процесса. Аэродинамический профиль в основном обрабатывается таким образом, что каждая хорда становится отдельным элементом, это весьма удобно для изменения масштаба и геометрии.

Рисование и взаимное расположение профилей в соответствие плану. Передняя кромка и лонжероны должны быть тщательно доведены до нужного размера, при этом надо помнить про толщину обшивки. На чертеже, следовательно, лонжероны должны быть нарисованы уже, чем они есть на самом деле. Желательно сделать лонжероны и переднюю кромку выше, чем они есть на самом деле, для того, чтобы рисунок лег ровнее. Также пазы на лонжеронах должны быть расположены таким образом, чтобы оставшаяся часть лонжерона уместилась в нервюрах, но осталась при этом квадратной.

На рисунке показаны основные аэродинамические профиля перед тем, как они будут разбиты на промежуточные.

Лонжерон и совместная с ним передняя кромка соединены вместе, чтобы потом их можно было исключить из построения.

Аэродинамические профили сопряжены вместе и образуют форму крыла при видимом лонжероне и передней кромке.

Лонжерон и передняя кромка удалены с помощью операции «subtract», остальные части крыла показаны.

Крыло вытягивается с помощью функции «solidedit» и «shell». Далее выделяются поочередно плоскости корневой части крыла и законцовки, удаляются, а то, что получается и есть обшивка крыла. Поэтому внутренняя часть обшивки крыла является основой для нервюр.

С помощью функции «плоскость сечения» формируются эскизы каждого профиля.

После этого под командой «плоскость сечения» выбирается создание раздела. С помощью этой команды созданные профили во всех точках профиля могут быть отображены. Для помощи в выравнивании нервюр крыльев я строго рекомендую создать на каждом сечении горизонтальную линию от задней кромки крыла до передней. Это позволит правильно выровнять крыло, если оно построено с кручением, а также сделать его прямым.

Поскольку эти шаблоны на самом деле созданы с учетом обшивки крыльев, внутренняя линия профилей является правильной линией для построения нервюр.

Теперь, когда все нервюры промаркированы с помощью команды «text», они готовы к печати. На каждой странице с нервюрами я разместил схематически коробку с площадкой, доступной для печати на принтере. Маленькие нервюры можно печатать на толстой бумаге, а для крупных аэродинамических профилей подойдет обычная бумага, которая затем усиливается перед вырезанием.

Комплектация деталей

После конструирования крыла, анализа и подбора всех необходимых для изготовления авиамодели деталей, был сделан список всего необходимого для постройки.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Строительный журнал