Строительный журнал

У одноклеточных растений место образования и место использования того или иного вещества настолько близко друг к другу, что передвижения веществ не является здесь проблемой.

Иное дело многоклеточные растения. По мере их эволюции фотосинтетический аппарат специализировался и перемещался в воздушные органы листья. расстояния которые приходилось проходить веществам внутри растения все увеличивалось. Организованное передвижение продуктов фотосинтеза стало в этих условиях физиологической потребностью. Инициатива в транспорте ассимилянтов принадлежит в первую очередь эмбриональным тканям.

По расстоянию, проходящему органическими веществами внутри растения, выделяют два вида передвижения транспорта: ближний и дальний. По * передвижения эти виды подразделяют в свою очередь: ближний транспорт – на симпластный и аллопластный; дальний транспорт – на флоэмный и ксилемный.

Флоэмный транспорт – начальный синтез органических происходит в хлоропластах. Вслед за синтезом начинается непрерывный отток продуктов фотосинтеза из листьев. Передвижения ассимилянтов начинаются в хлоропластах, переходит затем в цитоплазму, продолжается в специализированных поводящих тканях растения (флоэме) и заканчивается в потребляющих тканях, где они расходуются растущими тканями или отлагаются в запас. Таким образом, в общей цепи передвижения продуктов фотосинтеза модно выделить три звена:

внутриклеточное, паренхимное и флоэмное.

Поскольку передвижение начинается с хлоропластов, то хлоропласты рассматриваются как центры, дающие начало транспорта ассимилянтов в растении.

Внутриклеточный транспорт

Первым этапом в передвижении органических веществ является выход ассимилянтов из хлоропластов. Среди углеводных продуктов фотосинтеза наиболее подвижными являются триозофосфаты (фосфодиоксин), ацетон, фосфоглицериновая кислота, фосфоглицериновый альдегид – универсальные метаболиты промежуточного обмена (триозофосфаты связаны в общую систему взаимных превращений с гексофосфатами, сахарозой и крахмалом). Идея о ведущей роли триозофосфатов в оттоке ассимилянтов из хлоропластов является в настоящее время наиболее обоснованной и признанной.

Наиболее полное представление о выходе углеводов из хлоропласта через триозофосфатный путь дает схема предложенная *

Основным соединением, в форме которого углерод переносится из мембраны оболочки хлоропластов, является фосфодиоксиацетон. На его основе в цитоплазме происходит синтез главных подвижных форм углеводов для далекого транспорта. Главной формой углеводов для далекого транспорта является сахароза. Кроме сахарозы могут синтезироваться – раффиноза, стахиноза, *, сорбит, вербаскоза.

Метаболизм крахмала, отложенного в хлоропластах

Крахмал фосфорилоза глюкозо 1-фосфат изомераза +АТФ *1.6дифосфат альдороза триозофосфаты. Они легко выходят из хлоропластов в цитоплазму. На основании всего сказанного следует, что триозофосфатному механизму принадлежит великая, а может быть и универсальная роль в регулировании отношений между хлоропластами и цитоплазмой.

Межклеточный транспорт (паренхимный)

Прежде чем достичь проводящих клеток флоэмы и войти в русло далекого транспорта ассимилянты должны преодолеть пространство, которое отделяет клетку мезофилла от листовых жилок. На этом пути, измеряемом десятыми долями миллиметра ассимилянты должны пройти расстояние равное нескольким паренхимным клеткам (обычно 3-4 клетки).

Перемещение ассимилянтов к проводящим пучкам может осуществляться: по симпласту и по алопласту.

Симпластный транспорт – это передвижение органических веществ из одной клетки в другую внутри цитоплазмы через плазмодесмы.

Алопластный путь – когда продукты фотосинтеза покидают цитоплазму, выделяясь на поверхность ассимилирующих клеток (в алопласт) и там с раствором, окружающим клетки достигают проводящих пучков. Путь паренхимного транспорта ассимилянтов определяется анатомическим строением спутников ситовидных элементов.

Ситовидные элементы флоэмы семенных растений имеют два типа спутников или их аналогов:

открытый с плазмодесмами в сторону паренхимных тканей и

закрытый, без плазмодесм в этом направлении.

Им сопутствуют два принципиально разных механизма паренхимного транспорта сахаров: симпластный транспорт олигосахарозов рафинозной группы и алопластный транспорт сахарозы.

3 * флоэмы:***************************************

Сахароза проникает через клеточные стенки в 4 раза медленнее, чем вода. Почему? У нее очень крупные молекулы.

Большинству древесных растений свойственны спутники открытого типа и симпластический транспорт олигосахаридов.

Травянистым спутники закрытого типа и аллопластический транспорт сахарозы. У этой группы растений промежуточной зоной между фотосинтезирующими и проводящими клетками в листе является свободное пространство.

Флоэмный транспорт

С помощью флоэмного транспорта осуществляется перемещение ассимилянтов из производящих органов в органы потребления. Сахара движутся по флоэме в виде концентрированного раствора, в котором содержание сахаров составляет обычно 7-25% или 0,2-0,7*.

Флоэмный транспорт трудно изучать, так как опыты, нарушающие тем или иным путем тонкий баланс давления в комплексе ситовидных трубок, приводит к ошибочным результатам. Один из немногих методов, с помощью которого успешно исследовалось содержание и свойства флоэмы, основан на использовании тлей. Эти насекомые обладают уникальной способностью определять местонахождение какой-нибудь одной ситовидной трубки и прокалывать её своим стилетом во время кормления на растении. Проклов однажды ситовидную трубку они не должны больше затрачивать никаких усилий, так как под действием давления в ситовидных трубках происходит их принудительное кормление. Следовательно, природа содержимого ситовидных трубок и процессы флоэмного транспорта можно изучать используя тлей в качестве своеобразных кротов. Тело насекомого удаляют, а стилет остается воткнутым в ситовидную трубку, в виде *, через которую флоэмный сок течет под давлением.

Механизмы флоэмного транспорта

За длительный период изучения флоэмного транспорта было выдвинуто множество теорий о его механизме. Общепризнано, что транспорт по флоэме осуществляется путем перетекания растворов. Теория перетекания предложена немецким физиком Карлом Мюнхеном. Согласно этой теории перетекание растворов по флоэме полностью основано на простых принципах осмоса. Чтобы понять эту теорию, рассмотрим чисто физическую аналоговую систему: две жесткие сферы, сконструированные из мембраны с избирательной проницаемостью, погружают в воду и соединяют между собой непроницаемой трубкой. Первоначально одна сфера заполняется концентрированным раствором сахарозы (А) и другая разбавленным (В). В результате осмоса вода начинает поступать в обе сферы и в системе возникает давление. Поскольку давление возрастет в более концентрированном растворе А, оно будет передаваться по трубке к менее концентрированному раствору В. Если давление передаваемое от А превысит давление возникшее в В, то вода вместо того, чтобы поступать в В будет вынуждена выходить из него. Так как вода в этом случае поступает в А и выходит из В, перетекание раствора сахарозы будет происходить от А к В. Оно будет продолжаться до тех пор пока концентрации растворов А и В не выровняются.

В растении сахароза начинает активно накачиваться в ситовидные трубки мелких листовых жилок в ходе процесса называемого загрузкой флоэмы. Листовые жилки ветвятся многократно до тех пор, пока диаметр их отношений не оказывается равным толщине нескольких сосудов и ситовидных трубок. В этом месте они тесно примыкают к мезофилльным клеткам, принимающим активное участие в фотосинтезе. Транспорт сахарозы во флоэму избирателен и сопряжен с активным метаболизмом. Вероятно при этом происходит совместное проникновение сахарозы и водорода. Поступление в клетки флоэмы комплекса Н+ сахарозы (загрузка) и его выделение из клеток флоэмы (разгрузка) происходит путем перемещения молекул через мембраны с участием *.

Транспорт ассимилянтов во флоэме ориентируется в сторону потребляющих тканей (называемых в современной литературе аттрагирующими зонами). В растении возникает несколько аттрагирующих зон:

верхушечная меристема стебля,

кончики корней,

участки интеркалярного роста,

Эти зоны возникают в определенной последовательности соответственно программе онтогенеза растения.

У древесных растений важной аттрагирующей зоной является: камбиальный слой ствола, ветвей и корней. Потребность в ассимилянтах у каждого из этих центров в онтогенезе неодинакова. При образовании и развитии репродуктивных органов и цветков вначале возникает относительно слабая потребность в ассимилянтах. После оплодотворения потребность ассимилянтов сильно возрастает.

Ксилемный транспорт

У древесных растений к концу лета флоэма обычно разрушается. Поэтому осенью и зимой вряд ли может происходить передвижение органических веществ по флоэме. Весной в момент выхода из состояния покоя у древесных растений передвижение органических веществ происходит по ксилеме. Раствор органических веществ, перемещающихся по ксилеме называют пасокой. Пасока несет к побегам смесь органических веществ: аминокислоты, органические кислоты, сахара (береза). Аминокислоты расходуются на синтез и обновление белков. Наиболее важной транспортной формой аминокислот является аспарагиновая и глутаминовая кислоты.

Органические кислоты – используются на переаминирование и дыхание. Органические вещества, транспортирующиеся по ксилеме, являются производными дыхания.

Скорость передвижения

Средняя скорость движения:

сахароза – 70-80 см/час, аминокислоты 90 см/час.

Таким образом, органические вещества, передвигающиеся по флоэме, являются производными фотосинтеза, а вещества, передвигающиеся по ксилеме, являются производными дыхания.

Органические вещества откладываются в специальных запасающих тканях, из которых одни накапливают эти вещества внутри клеток, другие – внутри клеток и в их оболочках. Вещества, которые откладываются в запас: сахара, крахмал, инулин, аминокислоты, белки, масла.

Органические вещества могут накапливаться в растворённом (в корнеплодах свеклы, чешуйках лука), твёрдом (зёрна крахмала, белка – клубни картофеля, зёрна злаков, бобовых) или полужидком состоянии (капли масла в эндосперме клещевины). Особенно много органических веществ откладывается в видоизменённых подземных побегах (корневищах, клубнях, луковицах), а также в семенах и плодах. В стебле органические вещества могут откладываться в паренхимных клетках первичной коры, сердцевинных лучах, живых клетках сердцевины.

Мы знаем, что крахмал, образовавшийся в листьях, превращается затем в сахар и поступает во все органы растения.

Цель: выяснить, как сахар из листьев проникает в стебель?

Что делаем: на стебле комнатного растения (драцены, фикуса) осторожно сделаем кольцевой надрез. Удалим с поверхности стебля кольцо коры и обнажим древесину. На стебле укрепим стеклянный цилиндр с водой (смотри рисунок).

Что наблюдаем: через несколько недель на ветке, выше кольца появляется утолщение в виде наплыва. На нём начинают развиваться придаточные корни.

Результат: мы знаем, что в лубе расположены ситовидные трубки, а так как, окольцевав ветку мы их перерезали, то органические вещества, оттекающие из листьев, дошли до кольцевой вырезки и скопились там.

Вскоре из наплыва начинают развиваться придаточные корни.

Вывод: таким образом, опыт доказывает, что органические вещества передвигаются по лубу.

11. Видоизмененные побеги, их строение, биологическое и хозяйственное значение.

Видоизмененные побеги выполняют различные функции. Так, в побеге некоторых растений откладываются запасные питательные вещества (содержащие крахмал, сахара, минеральные вещества, фитонциды (вещества, убивающие микробы). Они широко используются в пищу человеком и используются на корм животным. Видоизмненные побеги также могут служить для вегетативного размножения, происходящего в природе без вмешательства человека.

12. Способы размножения растений.

Размноже́ние расте́ний - совокупность процессов, приводящих к увеличению числа особей некоторого вида; у растений имеет место бесполое, половое и вегетативное (бесполое и половое размножение объединяют в понятие генеративное размножение).

Бесполое размножение отличается от вегетативного тем, что при вегетативном размножении дочерняя особь, генетически идентичная материнской (клон), обязательно получает фрагмент материнского организма, так как образуется из него; при бесполом размножении же этого не происходит.

Вегетативное размножение происходит при помощи вегетативных органов - корней, надземных или подземных побегов, реже листьев.

Генеративное размножение связано с образованием в цветках особых мужских и женских специализированных клеток: спор (греч. «спора» - семя) и гамет (греч. «гаметес» - супруг).

Размножение растений с помощью спор называют споровым (бесполым) размножением. Размножение с помощью гамет (половых клеток) - половым размножением.

Размножение корневыми отпрысками. Как вам известно, у некоторых растений на корнях образуются придаточные почки. Из них развиваются надземные побеги, от оснований которых отрастают придаточные корни. Эти побеги называют корневыми отпрысками (рис. 139). После отмирания материнского корня дочерние растения становятся самостоятельными. При помощи корневых отпрысков размножаются и быстро занимают новые территории малина, осина, иван чай, щавель малый. Особенно много корневых отпрысков образуют трудноискоренимые сорные растения - бодяк, осот, вьюнок. Они могут возникать даже на отрезках корней длиной 0,5 см.

Осот с корневыми отпрысками

Размножение надземными побегами. Многие растения (луговой чай, клевер ползучий, вероника лекарственная) размножаются ползучими побегами. На узлах побегов образуются придаточные корни, а из боковых почек развиваются боковые побеги. После отмирания участков материнского побега молодые растения становятся самостоятельными.

Ветка ивы, укоренившаяся во влажной почве

На верхушке видоизмененных надземных побегов, или столонов, у земляники лесной, живучки ползучей, гусиной лапки формируются укороченные побеги. После образования корней они быстро растут и становятся самостоятельными дочерними растениями. От них отрастают новые столоны.

Размножение земляники усами

Размножение растений подземными видоизмененными побегами. Многие растения увеличивают свою численность путем размножения корневищами, луковицами и клубнями. При помощи корневищ размножаются черника, кислица, ландыш майский, пырей ползучий и многие другие растения. Корневища растений ветвятся. Из верхушечных и боковых почек развиваются молодые растения. При отмирании и разрушении старых участков корневищ они обособляются в отдельные растения.

Черника с подземными корневищами

При помощи луковиц размножаются лилии, лук, чеснок, тюльпаны. Луковицы у этих растений образуют луковички детки, которые после зимовки дают начало новым растениям.

Клубнями в природе размножаются хохлатки, седмичник и др. растения.

Размножение растений листьями. В природе размножение растений листьями происходит реже, чем побегами и корнями. Листьями размножается сердечник луговой, произрастающий по берегам рек на влажной почве (рис. 143). Летом его листочки отделяются от общего черешка. Из клеток основания листочков развиваются придаточные почки. После укоренения во влажной почве из почек развиваются молодые растения.

Сердечник луговой

Размножение листьями можно наблюдать у комнатного растения бриофиллюма. У него по краям листовых пластинок закладываются многочисленные почки. Находясь на листьях материнского растения, они дают начало небольшим побегам, образующим корни. Опадая, такие побеги укореняются в почве и дают начало взрослым растениям.

Лист бриофиллюма с придаточными почками

Значение вегетативного размножения в жизни растений. Благодаря вегетативному размножению растения увеличивают свою численность и расширяют занимаемые территории. На первых порах жизни дочерние особи получают питательные вещества от материнского растения. Поэтому они быстро развиваются, хорошо переносят неблагоприятные условия внешней среды, рано переходят к цветению и плодоношению.

В жизни некоторых растений вегетативное размножение имеет особое значение. Например, многие водные растения (ряска, рдесты, элодея) размножаются главным образом вегетативно.

Цветет ряска очень редко. Зато вегетативное размножение происходит очень быстро. Не успев отделиться от материнского растения, новые дочерние дольки приступают к размножению.

Нередко семена не могут образоваться из-за влияния неблагоприятных условий на цветение, сильного затенения, отсутствия насекомых опылителей, а уже образовавшиеся семена не могут прорасти через плотный дерновой покров. В связи с этим большинство лесных и болотных растений (черника, брусника, багульник, многие осоки и злаки) размножаются, в основном, вегетативным путем.

Бесполое размножение - это размножение, происходящее без участия половых клеток; при этом в размножении участвует лишь одна особь.

Такое размножение свойственно водорослям, мхам, папоротникам, хвощам и плаунам. Споры - это особые мелкие клетки. Они содержат ядро, цитоплазму, покрыты плотной оболочкой и способны на протяжении длительного времени переносить неблагоприятные условия. Попав в благоприятные условия среды, споры прорастают и образуют новые (дочерние) растения.

При бесполом размножении образующиеся дочерние организмы по своим свойствам одинаковы с материнским растением. В этом проявляется биологическое значение бесполого размножения.

Половое размножение - это размножение, при котором происходит слияние женских (♀) и мужских (♂) половых клеток, от чего появляются дочерние организмы, качественно иные, чем родительские; при этом в размножении участвуют два родительских организма.

Процесс слияния мужской и женской половых клеток называется оплодотворением.

Половые клетки, называемые гаметами (от греч. гаметос - "супруг"), развиваются у двух родительских организмов. Женские гаметы называются яйцеклетками. Мужскими гаметами являются неподвижные спермии (у семенных растений) или подвижные, со жгутиком - сперматозоиды (у споровых растений). В процессе оплодотворения при слиянии женских и мужских половых клеток возникает особая клетка - зигота (от греч. зиготос - "двуупряжный"). Она содержит наследственные свойства обоих родительских организмов. Из зиготы развивается новый (дочерний) организм с особыми свойствами, качественно новыми, отличными от родительских (см. схему).

У организма, полученного в результате оплодотворения, всегда возникает что-то новое, еще не встречавшееся в природе, хотя и очень похожее на его родителей. Этого не происходит при бесполом размножении, когда дочерние организмы развиваются без оплодотворения и только от одного родителя. Величайшее значение полового размножения заключается в обновлении свойств организмов. Такие организмы с новыми наследственными свойствами, полученными от обоих родителей, имеют больше шансов на выживание.

Важнейшее значение полового размножения в том, что организмы, возникшие половым путем, обладают новыми (в сравнении с родительскими) наследственными свойствами.

Связи между тремя основными группами органических веществ.

Поскольку все три основные группы органических веществ тесно связаны в метаболизме, можно выделить два основных ключевых момента в их взаимопревращении. Это прежде всего образование пировиноградной кислоты и уксусной кислоты . Именно эти два вещества являются теми краеугольными камнями, на которых основываются круговороты углеводов, жиров и белков.

От пировиноградной кислоты отходят пути образования глюкозы, а, следовательно и глюкозо-1-фосфата, как основы образования углеводов, и образование органических кислот (кетокислот), которые начинают путь синтеза аминокислот.

Уксусная кислота , образовываясь в русле синтеза органических кислот от пировиноградной кислоты, является началом пути образования жиров, а в русле расщепления жирных кислот в результате b-окисления, является связкой между метаболизмом жиров и углеводов.

Образование нуклеиновых кислот, различных вторичных органических соединений основывается на веществах, синтезирующихся на промежуточных этапах синтеза этих трех групп веществ.

В растении лист является основным органом биосинтеза. Продукты фотосинтеза запасаются в виде крахмала в хлоропластах и лейкопластах, перераспределение углеводов происходит при переходе крахмала в растворимые простые сахара.

В растении ксилема служит для перемещения воды и минеральных веществ из почвы в надземную часть, а флоэма служит для доставки сахарозы из листьев в другие органы растения.

По флоэме отток веществ наблюдается от донора (органа-синтезатора) вверх и вниз - к любому органу-акцептору, где эти вещества запасаются или потребляются. Органы, акцептирующие вещества, относятся, как правило, к запасающим органам (корнеплоды, корневища, клубни, луковицы).

По ксилеме же вещества движутся только снизу вверх.

Все потребляющие органы обеспечиваются, как правило, ближайшим к ним донором. Верхние фотосинтезирующие литься снабжают растущие почки и самые молодые листья. Нижние листья обеспечивают корни. Плоды обеспечиваются из ближайших к ним листьев.

Транспорт по флоэме может происходить одновременно в двух направлениях . Эта "двухнаправленность " является результатом одностороннего тока в отдельных, но смежных ситовидных трубках, соединенных с различными донорами и акцепторами.

Ситовидные трубки - это тонкостенные удлиненные клетки, соединенные своими концами и образующие непрерывную трубку. В местах соприкосновения клеточные стенки пронизаны ситовидными порами и называются поэтому ситовидными пластинками. В отличие от ксилемных клеток ситовидные флоэмные клетки - живые , хотя и непохожи на обычные живые клетки. Они не имеют ядра, но содержат некоторые другие органеллы и плазмалемму, которая играет важную роль в удержании сахаров в ситовидных трубках. Доказательством может служить способность флоэмных клеток к плазмолизу. Ситовидные трубки имеют короткий период жизни и постоянно заменяются новыми, образующимися при делении камбия.



Перемещение веществ по флоэме происходит с большой скоростью: до 100 см/час. Транспорт по флоэме осуществляется путем перетекания растворов. Высокое гидростатическое давление, обусловленное движением воды в богатые сахаром зоны с высоким отрицательным водным потенциалом, вызывает перетекание растворов в зоны с более низким давлением. Удаление сахара из них гарантирует постоянное наличие градиента и, следовательно, перетекание раствора. Загрузка растворенных веществ включает совместный транспорт (котранспорт) сахарозы и ионов водорода с участием специфической пермеазы. Этот процесс обусловлен градиентом кислотности и электрохимическим градиентом. Поглощенные ионы водорода выделяются впоследствии с помощью протонного транспортера, использующего энергию АТФ.

Кроме сахарозы во флоэмном потоке транспортируются аминокислоты и амиды (аспарагин, глютамин), при старении добавляются также органические и минеральные вещества из отмирающих органов.

В направленном транспорте ассимилятов в растении участвуют в основном три системы:

выталкивающая или нагнетающая (лист),

проводящая (флоэма),

Растения, имеющие корни и побеги, поглощают корнями из почвы воду и минеральные вещества, а в их зеленых надземных частях синтезируется органическое вещество из неорганических. Однако вода и минеральные вещества нужны не только корню, а органические вещества - не только листьям. Поэтому в растениях вещества должны перераспределяться, то есть перемещаться из одного органа в другой. А для этого нужна специальная проводящая система .

У растений ток воды и минеральных веществ идет снизу вверх, а ток органических веществ во всех направлениях. Эти два тока разделены, то есть идут по разным частям проводящей системы.

Передвижение воды с минеральными веществами

Передвижение воды с растворёнными в ней минеральными веществами в растении идёт по сосудам древесины в восходящем направлении: снизу вверх. Он зависит от силы всасывания воды клетками корневых волосков внизу и от интенсивности испарения наверху.

Корни, поглощая воду и почвы, вместе с ней постоянно привносят в организм растворённые минеральные соли. Поступив с водой в растение, соли не испаряются, а остаются в нём, образуя так называемое сухое вещество. Накопление сухого вещества в теле растения - результат совместной работы корней и листьев.

Восходящий ток воды в растении объединяет все органы растения в единое целое. Помимо этого, он необходим для нормального водоснабжения всех клеток. Особенно он важен для осуществления процесса фотосинтеза в листьях.

Передвижение органических веществ

Органические вещества (углеводы), образовавшиеся в листьях, поступают во все органы растения по ситовидным клеткам луба. Причем они могут перемещаться как вверх, так и вниз.

Зная, как передвигаются в растении питательные вещества, человек может управлять их движением. Например, если обрезать боковые побеги у томата и винограда, можно направить к плодам те органические вещества, которые использовались бы при развитии удалённых побегов. Это ускорит созревание плодов и увеличит урожай.

ПЕРЕДВИЖЕНИЕ ВЕЩЕСТВ
ПО РАСТЕНИЮ
1. Введение. Организация системы
транспорта у растений.
2. Передвижение элементов минерального
питания по растению.
3. Транспорт органических веществ.

I. Роль изучения транспорта веществ:
теоретическое значение как одна из
проблем физиологии
практическое значение
взаимосвязь отдельных органов в
единую физиологическую систему
Донорно-акцепторные связи между органами:
органы, поставляющие питательные вещества –
доноры,
органы, потребляющие – акцепторы.
Назовите доноры
минеральных питательных
веществ и органических
веществ.

Марчелло Мальпиги
1628-1694
Опыт Мальпиги со снятием
кольцеобразного куска коры со
стебля (А). Набухание ткани над
кольцом (Б)
Большую роль в выяснении путей передвижения
отдельных питательных веществ сыграл прием
кольцевания растений.
Этот прием был применен в конце XVII в. (1679 г.)
итальянским исследователем М. Мальпиги,
который высказал предположение, что вещества
их почвы поступают в корни, затем по
древесине в листья и стебли (сырой сок), а после
переработки – в обратном направлении по коре.

Организация системы транспорта

Внутриклеточный
Ближний: в пределах одного органа, по
неспецифическим тканям, на короткие
расстояния.
Дальний: между разными органами, по
специализированным тканям. Транспорт по
ксилеме и флоэме.

II. Передвижение элементов минерального питания по растению

Назовите акцепторы минеральных веществ
Как осуществляется внутриклеточный транспорт
Назовите системы ближнего транспорта
По какой ткани осуществляется дальний
транспорт минеральных веществ

Круговорот минеральных веществ в растении. Реутилизация

Для растительного организма характерна
экономность в использовании питательных
веществ, что выражается в способности к
реутилизации (повторному использованию)
основных элементов минерального питания.
Повторному использованию подвергается
большинство элементов минерального питания, в
том числе Р, N, K, Mg и др.
Элементы, которые практически не
реутилизируются - Ca и B, что связано с малой
подвижностью и плохой растворимостью
соединений, в состав которых входят эти
элементы.
Рециркуляция

В растении существуют два градиента распределения минеральных веществ:
для элементов, подвергающихся повторному использованию, характерен
базипетальный градиент распределения, т. е. чем выше расположен лист и
чем он моложе, тем больше в нем азота, фосфора, калия.
для элементов, не подвергающихся повторному использованию (кальций,
бор), характерен акропетальный градиент распределения. Чем старше
орган, тем больше содержание в нем указанных элементов.
Практическое значение исследования распределения элементов питания по
органам растения:
- по отношению к элементам, подвергающимся повторному использованию,
признаки голодания будут проявляться, прежде всего, на более старых
листьях,
- по отношению к элементам, не подвергающимся реутилизации, признаки
дефицита проявляются в первую очередь на молодых листьях.
Следовательно, градиент страдания растений направлен в противоположную
сторону градиента распределения.

III. ТРАНСПОРТ ОРГАНИЧЕСКИХ ВЕЩЕСТВ

1.
2.
3.
4.
Распределение ассимилятов в растении.
Пути передвижения ассимилятов.
Механизм транспорта.
Регуляция транспорта.

1.Распределение ассимилятов в растении

Передвижение ассимилятов
подчиняется схеме донор-акцептор
Фотосинтезирующие ткани
Места потребления
(центры роста:
меристемы,
листья и др.)
Места запасания
(плоды, семена,
запасающая
паренхима и др.)
Доноры (источники)
ассимилятов фотосинтезирующие
ткани, запасающие ткани
(органы).
Акцепторы (потребители)
– органы (ткани), не
способные
самостоятельно
удовлетворить свои
потребности в питании.
Неравномерное
распределение
ассимилятов

Движение по флоэме не имеет определенного
направления в отличие от ксилемы, зависит
от расположения донора и акцептора.

2. Пути передвижения ассимилятов

2.1. Внутриклеточный транспорт

Это транспорт ассимилятов из хлоропластов в цитоплазму
Крахмал → глюкоза → фруктозодифосфат → триозы.
Триозы выходят из хлоропластов с помощью транспортных белков с
затратой энергии.
В цитоплазме триозы расходуются на дыхание, синтез гексоз,
сахарозы, крахмала. Это позволяет снижать концентрацию
триозофосфатов в цитоплазме, что способствует их притоку по
градиенту концентрации.
Образующаяся сахароза не накапливается в цитоплазме, а
экспортируется или временно аккумулируется в вакуолях,
образуя резервный пул

2.2. Межклеточный паренхимный транспорт

Ближний транспорт может осуществляться двумя путями - по плазмодесмам
(симпласту) или по апопласту.
Скорость перемещения ассимилятов в паренхимных тканях 10-60 см/ч

Из апопласта и симпласта ассимиляты
поступают в сопровождающие
(передаточные) клетки (посредники
между клетками листовой паренхимы
и ситовидными трубками)
Имеют многочисленные выросты
клеточных стенок. Благодаря выростам
поверхность плазмалеммы возрастает.
Одновременно это увеличивает
емкость свободного пространства и
создает благоприятные условия для
абсорбции веществ

Доказательства флоэмного транспорта

2.3. Флоэмный транспорт
Доказательства флоэмного транспорта
1) Кольцевание, 1679 г.
итал. Марчелло
Мальпиги.
2) Использование
радиоактивных
меток 14СО2.
3) Метод получения
флоэмного сока с
помощью сосущих
насекомых.
Эта методика получила
название афидная (от лат.
тли - Aphidoidea)
Выделяется медвяная роса - падь

Структура флоэмы

В отличие от ксилемы флоэма представляет
собой совокупность живых клеток.
Флоэма состоит из нескольких типов клеток,
специализированных в метаболическом и
структурном отношении:
ситовидные трубки (ситовидные клетки) транспортная функция
клетки-спутницы - энергетическая роль
передаточные клетки.

Особенности ситовидных трубок

протопласты с ограниченной
метаболической активностью;
система межклеточных контактов
посредством ситовидных полей СП;
вертикальные ряды вытянутых
цилиндрических клеток с тонкими
клеточными оболочками.
клетки (членики) отделены друг от
друга ситовидными пластинками,
пронизанными многочисленными
порами, через которые проходят
цитоплазматические тяжи.

По мере развития структура СТ
претерпевает изменения:
распадается ядро;
уменьшаются размеры и
количество пластид и
митохондрий;
исчезает тонопласт, на месте
вакуоли образуется полость
ЭПР гладкий, в виде стопок.
цитоплазма располагается в
пристенном слое.
плазмалемма сохраняется в зрелых
клетках
В порах ситовидных пластинок откладывается
углевод каллоза и флоэмный белок (Ф-белок)

Клетки-спутницы

Примыкают к каждой клетке
ситовидной трубки.
Богаты цитоплазмой
Крупное ядро и ядрышко,
Многочисленные митохондрии и
рибосомы
Имеют высокую
метаболическую активность,
снабжают ситовидные трубки
АТФ.
Клетки- спутницы и ситовидные
трубки связаны между собой
плазмодесмами.

Состав флоэмного экссудата

Composition of White Lupine Xylem & Phloem Sap
Xylem Sap (mg
l-1)
Phloem Sap (mg
l-1)
Sucrose
*
154,000
Amino acids
700
13,000
Potassium
90
1,540
Sodium
60
120
Magnesium
27
85
Calcium
17
21
Iron
1.8
9.8
Manganese
0.6
1.4
Zinc
0.4
5.8
Copper
T
0.4
Nitrate
10
*
pH
6.3
7.9
Substance
Концентрация флоэмного сока колеблется в
пределах от 8 до 20%. На 90% или более
флоэмный сок состоит из углеводов, в основном
из дисахарида сахарозы (C12H22011).
У некоторых видов наряду с сахарозой
транспортной формой углеводов служат:
олигосахара (раффиноза, вербаскоза, стахиоза)
– Березовые, Мальвовые, Вязовые, Тыквенные
некоторые спирты (маннит - Маслиновые,
сорбит - Розоцветные, дульцит Бересклетовые). Моносахариды (глюкоза и
фруктоза) составляют малую долю
передвигающихся углеводов.
Азотистые вещества транспортируются по
флоэме в виде аминокислот и амидов. Во
флоэмном соке обнаружены низкомолекулярные
белки, органические кислоты, фитогормоны,
витамины, неорганические ионы.
Отличительной особенностью
флоэмного сока является
слабощелочная реакция (рН = 8,08,5), высокая концентрация АТФ
и ионов К+.

Особенности передвижения по флоэме

Высокая скорость - 50-100 см/ч (по
симпласту 6 см/час).
Большое количество переносимого материала.
За вегетационный период вниз по стволу
может пройти 250 кг сахара.
Перенос на большие расстояния – до 100 м.
Относительная масса флоэмы не велика.
Ситовидные трубки очень тонкие – диаметр 30
мкм (толщина волоса – 60-71 мкм).

Влияние условий внешней среды

Транспорт веществ по флоэме зависит:
от температуры. Оптимальная температура 20 и 30 0С.
условия минерального питания (бор, фосфор, калий
ускоряют скорость передвижения сахарозы).
вода
связь с метаболизмом: тормозится в присутствии всех
метаболических ингибиторов (азид натрия, йодацетат,
динитрофенол и др.) и ускоряется при добавлении АТФ.

Механизм флоэмного транспорта

Гипотеза «массового тока»
Выдвинута в 1930 г. Э. Мюнхом.
Ассимиляты транспортируются от
источника (А) к месту
потребления (В) по градиенту
тургорного давления,
возникающего в результате
осмоса.
Между В и А создается
осмотический градиент, который
в СТ превращается в градиент
гидростатического давления. В
результате во флоэме возникает
ток жидкости подавлением от
листа к корню.

Гипотеза электроосмотического потока

Выдвинута в 1979 году Д. Спаннером
На каждой ситовидной пластинке возникает
электрический потенциал, что связано с
циркуляцией ионов К+.
К+ активно (с затратой энергии АТФ)
поглощается выше ситовидной
перегородки и проникает через нее в
нижний членик.
По другую сторону перегородки ионы К+
пассивно выходят в сопровождающую
клетку. Активное поступление К+ с
одной стороны ситовидной трубки
обеспечивается тем, что
ассимиляционный поток обогащает
ситовидную трубку АТФ.
Возникающий на каждой ситовидной
пластинке электрический потенциал и
является движущей силой потока
сахарозы по флоэме.

Разгрузка флоэмы

В плазмалемме акцепторов работает Н+-помпа. Н+ выкачиваются (апопласт
закисляется), что способствует отдаче К+ и сахарозы. Возникает ΔрН, что приводит
к поступлению Н+ в симпорте с сахарозой (Н+ по градиенту, сахароза – против).
Акцептор
Свободное
пространство
Н+-помпа
Клеткаспутница
Н+
Н+
Сахароза
К+
сахароза

Непрерывная циркуляция внутренней водной среды – неотъемлемый атрибут жизни

Структурные и функциональные взаимосвязи между восходящим
и
нисходящим
водными
потоками
обеспечивают
функционирование единой гидродинамической системы в
растении.
Сходство с незамкнутой кровеносной системой животных

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Строительный журнал