Строительный журнал

Тело живого существа состоит из органов (печень, ноги, глаза и т. д.).

Органы состоят из тканей: кости, мышцы, нервы. Ткани состоят из клеток. Клетки содержат ядра. Ядра содержат хромосомы. Хромосомы несут гены. Мутации - это изменения в хромосомах и генах.

Клетку и ядро можно увидеть в микроскоп, но хромосомы видны не всегда. Они становятся видимыми только на некоторых стадиях жизни клетки, а именно, когда клетка делится и образует две дочерние клетки. В это время хромосомы представляют собой палочковидные или точкообразные структуры, окрашивающиеся на тонких срезах тканей определенными красителями легче, чем остальные части клетки. Гены слишком малы, чтобы их можно было увидеть даже в очень мощный микроскоп, но об их существовании можно судить на основании скрещиваний, так же как о существовании атомов можно судить на основании химических опытов. Гены расположены линейно вдоль хромосом. У некоторых, особенно больших, хромосом можно заметить, что они состоят из более мелких частей, так что они имеют вид как бы нитки бус или ленты с поперечными полосами. Эти бусинки и полосы слишком велики, чтобы представлять собой сами гены, но они отмечают положение генов в хромосомах.

Для каждого вида характерно определенное число хромосом в ядре. Человек имеет 46, мышь 40, конские бобы 12, кукуруза 20 хромосом. Каждая хромосома несет сотни или тысячи генов. Было вычислено, что хромосомы клетки человека несут не менее 40 000 генов, а быть может, и в два раза больше. Это громадное число, но оно не кажется таким уж большим, если представить себе, что гены ответственны за все, что является у нас врожденным и наследственным Гены определяют, принадлежим ли мы к группе крови А или 0, родились ли с нормальным зрением или страдаем одним из многих типов наследственной слепоты, имеем ли мы карие, светло-карие или голубые глаза, толстеем ли мы при обильном питании или остаемся худыми, превращает ли нас музыкальное образование в виртуозов или мы продолжаем оставаться неспособными отличить один звук от другого, и так с тысячами других особенностей, которые все вместе составляют наше физическое и психическое существо.

Перед делением клетки каждая хромосома всегда образует свою точную копию, несущую те же гены, расположенные в том же порядке. В итоге, когда из одной клетки возникают две, старые хромосомы отделяются от вновь образовавшихся их двойников и обе дочерние клетки получают совершенно одинаковые число и тип хромосом и генов.

Человеческое тело развивается из одной клетки - оплодотворенной яйцеклетки, содержащей 46 хромосом. Яйцеклетка делится и образует две клетки, которые вновь делятся, образуя четыре клетки, и т. д. до тех пор, пока не образуется все тело с его миллиардами клеток. Перед каждым клеточным делением хромосомы и гены удваиваются. Таким образом, каждая клетка всегда содержит те же 46 хромосом, несущих те же гены.

Процесс, при помощи которого происходит удвоение хромосом и генов, чрезвычайно точен. Он приводит к появлению миллионов и миллиардов клеток с совершенно одинаковыми генами. Однако иногда, быть может один раз на миллион, что-то в этом процессе нарушается. Какой-нибудь ген претерпевает химическое изменение, или новый ген оказывается не абсолютно подобным старому, или же изменяется порядок генов в хромосоме. Этот процесс изменения в гене или хромосоме называется мутацией. Ее результат, т. е. сам измененный ген или хромосому, также часто именуют мутацией, однако для того чтобы избежать путаницы, лучше говорить о мутировавшем гене или перестроенной хромосоме, а термин «мутация» сохранить для вызвавшего их появление процесса. Индивид, проявляющий действие мутировавшего гена или перестроенной хромосомы, носит название мутанта.

Когда хромосома, в которой произошла мутация, удваивается при подготовке к следующему делению, она так же точно воспроизводит копию мутировавшего гена или нового порядка генов, как и неизменных участков. Таким путем мутировавший ген наследуется и воспроизводится совершенно аналогично тому, как наследуется исходный ген, из которого он произошел. Огромное разнообразие генов, имеющихся у каждого существующего вида организмов, есть результат мутаций, многие из которых произошли миллионы лет назад.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Под мутацией понимают изменение количества и структуры ДНК в клетке или у организма. Другими словами, мутация - это изменение генотипа . Особенностью изменения генотипа является то, что это изменение в результате митоза или мейоза может быть передано следующим поколениям клеток.

Чаще всего под мутациями понимают небольшое изменение в последовательности нуклеотидов ДНК (изменения в одном гене). Это так называемые . Однако кроме них существуют и , когда изменения затрагивают крупные участки ДНК, или меняется количество хромосом.

В результате мутации у организма внезапно может появиться новый признак.

Мысль, что именно мутация является причиной появления новых передающихся через поколения признаков, была впервые высказана Гуго де Фризом в 1901 году. Позже мутации у дрозофилы были изучены Т. Морганом и сотрудниками его школы.

Мутация - вред или польза?

Мутации, происходящие в «незначащих» («молчащих») участках ДНК, не изменяют признаки организма и могут спокойно передаваться из поколения в поколение (на них не будет действовать естественный отбор). Такие мутации можно считать нейтральными. Также нейтральными являются мутации, когда участок гена заменяется на синонимичный. При этом, хотя последовательность нуклеотидов в определенном участке и будет отличаться, но синтезироваться будет такой же белок (с той же последовательностью аминокислот).

Однако мутирование может затронуть значащий ген, изменить аминокислотную последовательность синтезируемого белка, а, следовательно, вызвать изменение признаков организма. В последствии, если концентрация мутации в популяции достигнет определенного уровня, то это приведет к изменению характерного признака всей популяции.

В живой природе мутации возникают как ошибки в ДНК, поэтому все они априори вредны. Большинство мутаций понижают жизнеспособность организма, вызывают различные заболевания. Мутации, возникающие в соматических клетках, не передаются следующему поколению, но в результате митоза образуются дочерние клетки, составляющие ту или иную ткань. Нередко соматические мутации приводят к образованию различных опухолей и других заболеваний.

Мутации, возникающие в половых клетках, могут быть переданы следующему поколению. В стабильных условиях внешней среды почти все изменения генотипа оказываются вредными. Но если условия среды изменились, то может оказаться, что ранее вредная мутации станет полезной.

Например, мутация, вызывающая образование коротких крыльев у какого-нибудь насекомого, скорее всего будет вредна в популяции, живущей в местах, где нет сильного ветра. Данная мутация будет сродни уродству, заболеванию. Обладающие ею насекомые с трудом будут находить партнеров для спаривания. Но если на местности начнут дуть более сильные ветры (например, в результате пожара участок леса был уничтожен), то насекомых с длинными крыльями будет сносить ветром, им будет тяжелее перемещаться. В таких условиях преимущество могут получить короткокрылые особи. Они чаще длиннокрылых будут находить партнеров и пищу. Через некоторое время в популяции окажется больше короткокрылых мутантов. Таким образом, мутация закрепится и превратится в норму.

Мутации лежат в основе естественного отбора и в этом их основная польза. Для организма же подавляющее число мутаций - это вред.

Почему возникают мутации?

В природе мутации возникают случайно и спонтанно. То есть любой ген в любой момент времени может мутировать. Однако частота мутаций у разных организмов и клеток различна. Например, она связана с продолжительностью жизненного цикла: чем он короче, тем мутации возникают чаще. Так у бактерий мутации возникают намного чаще, чем у организмов-эукариот.

Кроме спонтанных мутаций (случающихся в естественных условиях) бывают индуцированные (человеком в лабораторных условиях или неблагоприятными условиями среды) мутации .

В основном мутации возникаю в результате ошибок при репликации (удвоении), репарации (восстановлении) ДНК, при неравном кроссинговере, неправильном расхождении хромосом в мейозе и др.

Так в клетках постоянно происходит восстановление (репарация) поврежденных участков ДНК. Однако если в следствие различных причин механизмы репарации нарушаются, то ошибки в ДНК будут оставаться и накапливаться.

Результатом ошибки при репликации становится замена одного нуклеотида в цепочке ДНК на другой.

Что вызывает мутации?

Повышенный уровень мутаций вызывает рентгеновское излучение, ультрафиолетовые и гамма-лучи. Также к мутагенам относятся α- и β-частицы, нейтроны, космическое излучение (все это частицы, обладающие высокой энергией).

Мутаген - это то, что способно вызывать мутацию.

Кроме различных излучений, мутагенным действием обладают многие химические вещества: формальдегид, колхицин, компоненты табака, пестициды, консерванты, некоторые лекарственные препараты и др.

Мутации делятся на спонтанные и индуцированные . Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около 10 в −9 степени - 10 в −12 на нуклеотид за клеточную генерацию. Индуцированными мутациями называют наследуемые изменения генома, возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды.

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций - репликация ДНК , нарушения репарации ДНК и генетическая рекомбинация.

Связь мутаций с репликацией ДНК

Многие спонтанные химические изменения нуклеотидов приводят к мутациям, которые возникают при репликации. Например, из-за деаминирования цитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция.

Связь мутаций с рекомбинацией ДНК

Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер . Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация, а в другой - делеция.

Связь мутаций с репарацией ДНК

Спонтанные повреждения ДНК встречаются довольно часто, такие события имеют место в каждой клетке. Для устранения последствий подобных повреждений имеется специальные репарационные механизмы (например, ошибочный участок ДНК вырезается и на этом месте восстанавливается исходный). Мутации возникают лишь тогда, когда репарационный механизм по каким-то причинам не работает или не справляется с устранением повреждений. Мутации, возникающие в генах белков, ответственных за репарацию, могут приводить к многократному повышению (мутаторный эффект) или понижению (антимутаторный эффект) частоты мутирования других генов. Так, мутации генов многих ферментов системы эксцизионной репарации приводят к резкому повышению частоты соматических мутаций у человека, а это, в свою очередь, приводит к развитию пигментной ксеродермы и злокачественных опухолей покровов.

Мутагены

Существуют факторы, способные заметно увеличить частоту мутаций - мутагенные факторы . К ним относятся:

  • химические мутагены - вещества, вызывающие мутации,
  • физические мутагены - ионизирующие излучения , в том числе естественного радиационного фона, ультрафиолетовое излучение, высокая температура и др.,
  • биологические мутагены - например, ретровирусы , ретротранспозоны .

Классификации мутаций

Существует несколько классификаций мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлени, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурного на бурый) и неоморфные .

В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

  • генные
  • хромосомные
  • геномные .

Последствия мутаций для клетки и организма

Мутации, которые ухудшают деятельность клетки в многоклеточном организме, часто приводят к уничтожению клетки (в частности, к программируемой смерти клетки, - апоптозу). Если внутри- и внеклеточные защитные механизмы не распознали мутацию и клетка прошла деление, то мутантный ген передастся всем потомкам клетки и, чаще всего, приводит к тому, что все эти клетки начинают функционировать иначе.

Роль мутаций в эволюции

При существенном изменении условий существования те мутации, которые раньше были вредными, могут оказаться полезными. Таким образом, мутации являются материалом для естественного отбора . Так, мутанты-меланисты (темноокрашенные особи) в популяциях березовой пяденицы (Biston betularia) в Англии впервые были обнаружены учеными среди типичных светлых особей в середине XIX века. Темная окраска возникает в результате мутации одного гена. Бабочки проводят день на стволах и ветвях деревьев, обычно покрытых лишайниками, на фоне которых светлая окраска является маскирующей. В результате промышленной революции, сопровождающейся загрязнением атмосферы, лишайники погибли, а светлые стволы берез покрылись копотью. В результате к середине XX века (за 50-100 поколений) в промышленных районах темная морфа почти полностью вытеснила светлую. Было показано, что главная причина преимущественного выживания черной формы - хищничество птиц, которые избирательно выедали светлых бабочек в загрязненных районах.

Если мутация затрагивает «молчащие» участки ДНК, либо приводит к замене одного элемента генетического кода на синонимичный, то она обычно никак не проявляется в фенотипе (проявление такой синонимичной замены может быть связано с разной частотой употребления кодонов). Однако методами генного анализа такие мутации можно обнаружить. Поскольку чаще всего мутации происходят в результате естественных причин, то в предположении, что основные свойства внешней среды не менялись, получается, что частота мутаций должна быть примерно постоянной. Этот факт можно использовать для исследования филогении - изучения происхождения и родственных связей различных таксонов , в том числе и человека . Таким образом, мутации в молчащих генах служат для исследователей своеобразными «молекулярными часами». Теория "молекулярных часов" исходит также из того, что большинство мутаций нейтральны, и скорость их накопления в данном гене не зависит или слабо зависит от действия естественного отбора и потому остается постоянной в течение длительного времени. Для разных генов эта скорость, тем не менее, будет различаться.

Исследование мутаций в митохондриальной ДНК (наследуется по материнской линии) и в Y-хромосомах (наследуется по отцовской линии) широко используется в эволюционной биологии для изучения происхождения рас и народностей, реконструкции биологического развития человечества.

Проблема случайности мутаций

В 40-е годы среди микробиологов была популярна точка зрения, согласно которой мутации вызываются воздействием фактора среды (например. антибиотика), к которому они позволяют адаптироваться. Для проверки этой гипотезы был разработан флуктуационный тест и метод реплик .
Флуктуационный тест Лурия-Дельбрюка заключается в том, что небольшие порции исходной культуры бактерий рассеивают в пробирки с жидкой средой, а после нескольких циклов делений добавляют в пробирки антибиотик. Затем (без последующих делений) на чашки Петри с твердой средой высевают выживших устойчивых к антибиотику бактерий. Тест показал. что число устойчивых колоний из разных пробирок очень изменчиво - в большинстве случаев оно небольшое (или нулевое), а в некоторых случаях очень высокое. Это означает, что мутации, вызвавшие устойчивость к антибиотику, возникали в случайные моменты времени как до, так и после его воздействия.
Метод реплик (в микробиологии) заключается в том, что с исходной чашки Петри, где на твердой среде растут колонии бактерий, делается отпечаток на ворсистую ткань, а затем с ткани бактерии переносятся на несколько других чашек, где рисунок их расположения оказывается тем же, что на исходной чашке. После воздействия антибиотиком на всех чашках выживают колонии, расположенные в одних и тех же точках. Высевая такие колонии на новые чашки, можно показать, что все бактерии внутри колонии обладают устойчивостью.
Таким образом, обоими методами было доказано, что «адаптивные» мутации возникают независимо от воздействия того фактора, к которому они позволяют приспособиться, и в этом смысле мутации случайны. Однако несомненно, что возможность тех или иных мутаций зависит от генотипа и канализована предшествующим ходом эволюции (см. Закон гомологических рядов в наследственной изменчивости). Кроме того, закономерно различается частота мутирования разных генов и разных участков внутри одного гена. Также известно, что высшие организмы используют «целенаправленные» (то есть происходящие в определенных участках ДНК) мутации в механизмах иммунитета . С их помощью создаётся разнообразие клонов лимфоцитов , среди которых в результате всегда находятся клетки, способные дать иммунный ответ на новую, неизвестную для организма болезнь. Подходящие лимфоциты подвергаются положительной селекции , в результате возникает иммунологическая память.

См. также

Ссылки

Инге-Вечтомов С.В. Генетика с основами селекции. М., Высшая школа, 1989.

Примечания


Wikimedia Foundation . 2010 .

Здравствуйте, с вами Ольга Рышкова. Сегодня побеседуем о мутациях. Что это такое – мутация? Мутации в человеческих организмах это хорошо или плохо, это положительное или опасное для нас явление? Мутации могут быть причиной болезней, а могут дать своим носителям невосприимчивость к заболеваниям, таким как рак, СПИД, малярия, сахарный диабет.

Что такое мутация?

Что же это такое – мутация и где она происходит? Клетки человека (как и растений, и животных) имеют ядро.

В ядре заключён набор хромосом. Хромосома – это носитель генов, то есть носитель генетической, наследственной информации.

Каждая хромосома образуется из молекулы ДНК, которая содержит генетическую информацию и передаётся от родителей к детям. Молекула ДНК выглядит вот так:

Мутации происходят именно в молекуле ДНК.

Как они происходят?

Как происходят мутации? ДНК каждого человека состоит всего лишь из четырёх азотистых оснований – A,T,G,C. Но молекула ДНК очень большая и они повторяются в ней многократно в разных последовательностях. Характеристика каждой нашей клетки зависит от того, в какой последовательности расположены эти азотистые основания.

Изменение последовательности этих оснований в ДНК и приводит к мутациям.

Мутацию может вызвать небольшое изменение в одном основании ДНК или его части. Часть хромосомы может быть утеряна. Или эта часть может продублироваться. Или два гена поменяются местами. Мутации возникают, когда в генах начинается путаница. Ген – это участок ДНК. На этом рисунке для наглядности буквами обозначены не азотистые основания (их всего четыре — A,T,G,C), а участки хромосомы, с которыми происходят изменения.

Но это ещё не мутация.

Вы заметили, что я сказала «приводит к мутациям», а не «это и есть мутация». Например, в ДНК произошло изменение, а клетка, в которой эта ДНК расположена, может просто погибнуть. И никаких последствий в организме не останется. Чтобы мы могли сказать, что произошла мутация, это изменение должно быть стойким. Это значит, что клетка будет делиться, дочерние клетки ещё раз делиться и так многократно, и это изменение передастся всем потомкам данной клетки и закрепится в организме. Вот тогда мы можем сказать, что произошла мутация, то есть изменение в геноме человека и это изменение может передаться его потомкам.

Почему они происходят?

Почему происходят мутации в клетках человека? Есть такое понятие «мутагены», это физические и химические факторы, которые вызывают изменения в структуре хромосом и генов, то есть вызывают мутации.

  • К физическим относят радиацию, ионизирующее и ультрафиолетовое излучение, высокие и низкие температуры.
  • К химическим – нитраты, пестициды, продукты переработки нефти, некоторые пищевые добавки, некоторые лекарственные препараты и т.д.
  • Мутагены могут быть биологическими, к таким относят некоторые микроорганизмы, вирусы (кори, краснухи, гриппа), а также продукты окисления жиров внутри человеческого организма.

Мутации могут быть опасными.

Даже самая маленькая генная мутация резко увеличивает вероятность врождённых дефектов. Мутации могут стать причиной отклонений в развитии плода. Они возникают в процессе оплодотворения, когда сперматозоид встречается с яйцеклеткой. Что-то может пойти не так при смешении геномов или проблема может уже присутствовать в родительских генах. Это ведёт к рождению детей с генетическими отклонениями.

Мутации могут быть полезными.

Кому-то эти мутации дают привлекательную внешность, высокий уровень интеллекта или атлетическое телосложение. Такие мутации эффективно притягивают противоположный пол. Востребованные мутировавшие гены передаются потомкам и распространяются по планете.

Мутации привели к появлению большого числа людей, невосприимчивых к опасным инфекционным заболеваниям, таким как чума и СПИД, эти люди не заболеют ими даже во время самой страшной эпидемии.

Мутации полезные и вредные одновременно.

Одна из главных болезней в Африке – малярия. Но есть люди, которые малярией не болеют. Это люди с серповидными эритроцитами, вот такими:

Мутировавшие эритроциты достались им по наследству от предков. Такие эритроциты плохо переносят кислород, поэтому их обладатели хилые и страдают анемией. Но они невосприимчивы к малярии.

Или другой замечательный пример. Генетическая мутация, наследственное заболевание – синдром Ларона. У этих людей наследственный недостаток инсулиноподобного фактора роста ИФР-1, из-за этого рост их очень рано останавливается. Но из-за недостатка ИФР-1 они никогда не болеют раком, сердечно-сосудистыми заболеваниями и сахарным диабетом. Среди людей с синдромом Ларона эти заболевания вообще не встречаются.

Продукты, которые мы едим – это мутанты.

Да, мутанты, и это были полезные мутации. Большая часть продуктов, которые мы используем в пищу, появилась в результате мутаций.

Два примера. Дикий рис красный, его урожайность на 20% ниже, чем посевного. Посевной рис появился как мутировавшая форма около 10 000 лет назад. Оказалось, что он проще очищается, быстрее варится, что позволяло людям экономить топливо. Из-за высокой урожайности и полезных свойств крестьяне стали предпочитать мутировавший вид. То есть белый рис – это мутировавший красный.

Пшеницу, которую мы сейчас едим, стали выращивать за 7 тысяч лет до нашей эры. Человек выбрал мутировавшую дикую пшеницу с более крупными и неосыпающимися зёрнами. Её мы выращиваем до сих пор.

Другие культурные растения также выращивают несколько тысяч лет. Человек отбирал мутировавшие сорта диких растений и специально выращивал их. Сегодня мы потребляем результаты мутаций, отобранные в древние времена.

Не все мутации передаются по наследству.

Я говорю о мутациях, которые возникают в течение жизни одного человека. Это раковые клетки.

В следующей статье я расскажу вам о том, как мутации приводят к появлению раковых клеток и откуда среди нас взялись люди, невосприимчивые к ВИЧ-инфекции, люди, у которых есть иммунитет к ВИЧ.

Если у вас остались вопросы о том, что такое мутации, где, как и почему они происходят, обсудим это в комментариях. Если статья показалась вам полезной, поделитесь с друзьями в социальных сетях.

Мутации делятся на спонтанные и индуцированные .

Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около 10 − 9 {\displaystyle 10^{-9}} - 10 − 12 {\displaystyle 10^{-12}} на нуклеотид за клеточную генерацию организма.

Индуцированными мутациями называют наследуемые изменения генома , возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды .

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций - репликация ДНК , нарушения репарации ДНК , транскрипции и генетическая рекомбинация .

Связь мутаций с репликацией ДНК

Многие спонтанные химические изменения нуклеотидов приводят к мутациям, которые возникают при репликации . Например, из-за дезаминирования цитозина напротив гуанина в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК, напротив урацила в новую цепь включается аденин , образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Связь мутаций с рекомбинацией ДНК

Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер . Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация , а в другой - делеция .

Связь мутаций с репарацией ДНК

Таутомерная модель мутагенеза

Предполагается, что одной из причин образования мутаций замены основания является дезаминирование 5-метилцитозина , что может вызывать транзиции от цитозина к тимину. Из-за дезаминирования цитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Классификации мутаций

Существует несколько классификаций мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлении, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурной на бурую) и неоморфные .

В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

  • геномные ;
  • хромосомные ;
  • генные .

Точечная мутация, или единственная замена оснований, - тип мутации в ДНК или РНК, для которой характерна замена одного азотистого основания другим. Термин также применяется и в отношении парных замен нуклеотидов. Термин точечная мутация включает так же инсерции и делеции одного или нескольких нуклеотидов. Выделяют несколько типов точечных мутаций.

Встречаются также сложные мутации. Это такие изменения ДНК, когда один её участок заменяется участком другой длины и другого нуклеотидного состава .

Точечные мутации могут появляться напротив таких повреждений молекулы ДНК, которые способны останавливать синтез ДНК. Например, напротив циклобутановых пиримидиновых димеров. Такие мутации называются мишенными мутациями (от слова «мишень») . Циклобутановые пиримидиновые димеры вызывают как мишенные мутации замены оснований , так и мишенные мутации сдвига рамки .

Иногда точечные мутации образуются на, так называемых, неповрежденных участках ДНК, часто в небольшой окрестности от фотодимеров. Такие мутации называются немишенными мутациями замены оснований или немишенными мутациями сдвига рамки .

Точечные мутации образуются не всегда сразу же после воздействия мутагена. Иногда они появляются после десятков циклов репликаций. Это явление носит название задерживающихся мутаций . При нестабильности генома, главной причине образования злокачественных опухолей, резко возрастает количество немишенных и задерживающихся мутаций .

Возможны четыре генетических последствия точковых мутаций: 1) сохранение смысла кодона из-за вырожденности генетического кода (синонимическая замена нуклеотида), 2) изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация), 3) образование бессмысленного кодона с преждевременной терминацией (нонсенс-мутация). В генетическом коде имеются три бессмысленных кодона: амбер - UAG, охр - UAA и опал - UGA (в соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов - например амбер-мутация), 4) обратная замена (стоп-кодона на смысловой кодон).

По влиянию на экспрессию генов мутации разделяют на две категории: мутации типа замен пар оснований и типа сдвига рамки считывания (frameshift) . Последние представляют собой делеции или вставки нуклеотидов, число которых не кратно трём, что связано с триплетностью генетического кода.

Первичную мутацию иногда называют прямой мутацией , а мутацию, восстанавливающую исходную структуру гена, - обратной мутацией , или реверсией. Возврат к исходному фенотипу у мутантного организма вследствие восстановления функции мутантного гена нередко происходит не за счет истинной реверсии, а вследствие мутации в другой части того же самого гена или даже другого неаллельного гена. В этом случае возвратную мутацию называют супрессорной. Генетические механизмы, благодаря которым происходит супрессия мутантного фенотипа, весьма разнообразны.

Почковые мутации (спорты) - стойкие соматические мутации, происходящие в клетках точек роста растений. Приводят к клоновой изменчивости . При вегетативном размножении сохраняются. Многие сорта культурных растений являются почковыми мутантами .

Последствия мутаций для клетки и организма

Мутации, которые ухудшают деятельность клетки в многоклеточном организме, часто приводят к уничтожению клетки (в частности, к программируемой смерти клетки, - апоптозу). Если внутри- и внеклеточные защитные механизмы не распознали мутацию и клетка прошла деление, то мутантный ген передастся всем потомкам клетки и, чаще всего, приводит к тому, что все эти клетки начинают функционировать иначе.

Флуктуационный тест Лурии -Дельбрюка заключается в том, что небольшие порции исходной культуры бактерий рассеивают в пробирки с жидкой средой, а после нескольких циклов делений добавляют в пробирки антибиотик. Затем (без последующих делений) на чашке Петри с твердой средой высевают выживших устойчивых к антибиотику бактерий. Тест показал, что число устойчивых колоний из разных пробирок очень изменчиво - в большинстве случаев оно небольшое (или нулевое), а в некоторых случаях очень высокое. Это означает, что мутации, вызвавшие устойчивость к антибиотику, возникали в случайные моменты времени как до, так и после его воздействия.

Метод реплик заключается в том, что с исходной чашки Петри, где на твердой среде растут колонии бактерий, делается отпечаток на ворсистую ткань, а затем с ткани бактерии переносятся на несколько других чашек, где рисунок их расположения оказывается тем же, что на исходной чашке. После воздействия антибиотиком на всех чашках выживают колонии, расположенные в одних и тех же точках. Высевая такие колонии на новые чашки, можно показать, что все бактерии внутри колонии обладают устойчивостью.

Таким образом, обоими методами было доказано, что «адаптивные» мутации возникают независимо от воздействия того фактора, к которому они позволяют приспособиться, и в этом смысле мутации случайны. Однако несомненно, что возможность тех или иных мутаций зависит от генотипа и канализована предшествующим ходом эволюции (см.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Строительный журнал